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Abstract

The use of Liquid Argon Time Projection Chambers (LArTPCs) as a detector technology
in neutrino experiments has grown considerably over the past two decades. The excellent
spatial and calorimetric resolution offered by LArTPCs enable precise neutrino oscillation
measurements as well as beyond-Standard Model searches. One such search, which is the
focus of this note, is the search for nucleus-bound neutron-antineutron (n − n̄) oscillation.
The n − n̄ oscillation process is a baryon number violating process that produces a unique,
star-like topology as a result of multiple final state pions. This unique signature is a key
feature that may be used to search for this signal process. This note describes a machine
learning-based analysis of MicroBooNE data, making use of a sparse convolutional neural
network to search for n− n̄ oscillation-like signals in MicroBooNE. While the future DUNE
LArTPC can search for this signature with high sensitivity, existing MicroBooNE data can
be used to demonstrate and validate methodologies that can be used as part of the DUNE
search. This document presents the first-ever search for n− n̄ oscillation in a LArTPC, using
MicroBooNE off-beam data (data collected when the neutrino beam was not running).
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2 ANALYSIS OVERVIEW

1 Introduction

A nucleus-bound neutron-antineutron (n− n̄) oscillation is a process where a neutron sponta-
neously transforms into an antineutron. The resulting antineutron annihilates with a neighboring
nucleon (proton or neutron) producing, on average, 3-4 final state pions, with zero net momen-
tum and a total energy corresponding to approximately the sum of the mass of the two nucleons.
This energetic interaction creates a star-like topology, a striking signature to search for this signal
process and separate it from background processes.

n − n̄ oscillation is a theoretically motivated beyond-Standard Model process that violates
baryon number by two units [1] [2]. A discovery or stringent lower bound on its transition rate
would make an important contribution to our understanding of the baryon asymmetry in the Uni-
verse. To date, limits are provided on the lifetimes of this process by various experiments using
either free neutrons or bound neutrons in nuclei [3–12] The most stringent limit on the lifetime
of this process is provided by the Super-Kamiokande experiment [13].

There is an opportunity to perform a high sensitivity search with the future Liquid Argon Time
Projection Chamber (LArTPC)-based DUNE detector [14]. This note discusses the methodology
for the n− n̄ oscillation search using the MicroBooNE detector [15] which also employs LArTPC
technology. The objective of the n − n̄ search in MicroBooNE is not to set a competitive n − n̄
lifetime limit, but to serve as first ever demonstration of an n− n̄ search in a liquid argon detector
and as a testbed for the future DUNE experiment. It is worth mentioning that the key difference
between the search strategy of MicroBooNE and DUNE would be related to the nature of back-
ground. In MicroBooNE, a surface detector, the dominant background for the n− n̄ signal process
is cosmogenic background (predominantly cosmic ray muons and/or products of their electromag-
netic and hadronic showers), whereas for DUNE the dominant background is expected to be from
high-energy atmospheric neutrinos interacting in the detector through neutral current interactions.

2 Analysis Overview

The analysis begins by simulating the signal (n− n̄) and background samples. A data driven
approach is used to simulate the cosmogenic background which enables accurate modeling of cos-
mogenics and noise sources, including any time-dependence. Furthermore, the first iteration of
this analysis used CORSIKA simulated background which leads to discrepancy in data and Monte
Carlo (MC) [16]. To overcome these data-MC differences, MicroBooNE’s off-beam data, collected
using triggers outside the beam window, are used. The signal samples are generated overlaying
the signal n− n̄ events on the top of off-beam data as shown in Fig. 1. To simulate n− n̄ events
uniformly across the detector’s active volume (85 tonnes), MicroBooNE uses the GENIE neu-
trino event generator (GENIE v.3.00.04) [17] to model the initial state nucleon Fermi momentum,
binding energy, and final state interactions. The simulated interaction is subsequently processed
with Geant4 [18] and detector simulation. These simulation stages (GENIE, Geant4, and detector
simulations) can also alter the appearance of the signal event and therefore will be considered as
systematic sources of uncertainty.

A single signal n − n̄ interaction is simulated in each event (also referred to as an “exposure
interval”, consisting of a 2.3ms time interval). The events include multiple reconstructed particle
interactions in the liquid argon volume; they are called "clusters" (3D objects which are collections
of spacepoints as a result of the Wire-Cell cluster reconstruction where each spacepoint carries
information about the wire position, time-tick, and charge deposition) [19]. Following cluster
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2 ANALYSIS OVERVIEW

Figure 1: (top) Event display showing background sample. (bottom) Event display showing an
n−n̄ signal sample (highlighted in red circle) overlaid on the top of background sample. The x-axis
represents z direction (beam direction) and y-axis is the vertical direction. The view in this image
is front view (YZ) of the detector. Color represents charge deposition. For the background sample,
MicroBooNE off-beam data is used. For the signal simulation, a GENIE-simulated interaction is
overlaid on MicroBooNE off-beam data.

reconstruction, a preselection using a multi-variate algorithm Boosted Decision Tree (BDT) is
developed. The preselection aims to significantly reduce the background rate (predominantly
cosmic ray muons) while maintaining high signal efficiency. The BDT is trained using variables
that contain information about position and time associated with the spacepoints. Details about
the BDT are given in Appendix A. The training outcome is shown in Fig. 2 (left) where a clear
separation is seen between the signal (n − n̄) and background (cosmic) processes. By selecting
clusters with BDT>0.1, the n − n̄ cluster selection efficiency (86.48%) is about 10 times higher
than the cosmic cluster selection efficiency (8.58%).
These clusters are further used for developing the final selection based on image analysis using
a sparse Convolution Neural Network (CNN) [20] [21]. The performance of sparse CNN has
previously been validated using MicroBooNE data [22] [23]. For this analysis, the 2D projections
on MicroBooNE’s three planes, because of their resemblance with 2D pixeled RGB images, are
used as the CNN input. These 2D projections are formatted in such a way as to retain only
the important pixels. The wire position, time-tick, and charge deposition is saved only for those
spacepoints associated with signal or background clusters. This way of saving the localized clusters
rather than the entire readout image is highly memory-efficient. Further details on the CNN are
provided in Appendix B.
The CNN training results are shown in Fig. 2 (middle). The CNN score cut for the final selection
is optimized with respect to the projected sensitivity using a statistically independent sample
with sufficient statistics (nearly 1.6M events). As a prerequisite for the sensitivity calculation,
the background is estimated and efficiencies for signal and background events are evaluated by
varying CNN score cuts which are represented by orange stars in Fig. 2 (right) and are shown in
Tab. 1. The statistical uncertainty on the background estimate as well as on signal and background
efficiencies are shown in Tab. 1. For these particular selection efficiencies, preliminary sensitivity
values are calculated, using the TRolke package in ROOT [24], by assuming a conservative estimate
of 15% systematic uncertainty. These are shown in Tab. 1. Considering sensitivity as a figure of
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3 SENSITIVITY CALCULATION

merit, the optimal CNN cut is found to be 0.800, achieving 73.6±0.034 % signal efficiency and
8.77×10−3±7.4×10−4 % background efficiency.

Figure 2: (left) Classification performance of the BDT for the n − n̄ and cosmic clusters. The
entries are area-normalized. (middle) CNN score distribution for the n − n̄ and cosmic clusters.
(right) Signal selection efficiency versus background selection efficiency after final selection, vary-
ing the CNN score cut, where the cut values are [0.77, 0.78, 0.79, 0.795, 0.796, 0.797, 0.798,
0.7985, 0.799, 0.7995, 0.800, 0.801, 0.802, 0.803, 0.804, 0.805] represented by orange stars

CNN cut Signal effi. Bkg. effi. Bkg. estimate Sensitivity
0.797 0.827 ± 0.0003 1.53e-4 ± 9.7e-6 24.8 ± 1.6 2.62e+25 yrs
0.798 0.822 ± 0.0003 1.27e-4 ± 8.8e-6 20.5 ± 1.4 2.83e+25 yrs
0.799 0.801 ± 0.00031 1.08e-4 ± 8.2e-6 17.5 ± 1.3 2.98e+25 yrs
0.800 0.736 ± 0.00034 8.77e-5 ± 7.4e-6 14.2 ± 1.2 2.99e+25 yrs
0.801 0.639 ± 0.00038 6.61e-5 ± 6.4e-6 10.7 ± 1.0 2.95e+25 yrs
0.802 0.508 ± 0.00039 5.0e-5 ± 5.6e-6 8.1 ± 0.9 2.65e+25 yrs
0.803 0.349 ± 0.00037 4.26e-5 ± 5.1e-6 6.9 ± 0.8 1.95e+25 yrs

Table 1: Preliminary sensitivity around the optimized CNN cut 0.800. The signal and background
efficiencies and the background estimate are shown. The errors shown indicate finite-MC statistical
uncertainties.

Table 2 shows the number of entities for each reconstruction and selection stage. During the
preselection, the number of cosmic clusters is reduced, and the number of n− n̄ clusters and cos-
mic clusters per event become of the same order. Then, the number of cosmic clusters is highly
suppressed after the final selection, while the number of n− n̄ clusters remains high.

3 Sensitivity Calculation

The sensitivity for MicroBooNE’s n− n̄ search is calculated assuming 372 seconds of exposure
(equal to the data exposure that will be used to make this measurement in the future), corre-
sponding to 3.13 neutron·years and considering statistical uncertainties only. This is shown in
Tab. 3. The Rolke method uses a frequentist approach to evaluate the sensitivity and limits.
There are various models within the TRolke package to account for signal selection efficiency
and background contamination. This analysis uses a Gaussian model, which considers Gaussian
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Entities n− n̄ cosmic
Events 1,633,525 1,618,827

Reconstructed clusters 1,684,516 14,857,224
Clusters (after pre-selection) 1,455,214 1,283,074
Clusters (after final-selection) 1,207,153 142
Events (after final-selection) 1,202,281 142

Selection efficiency 0.736 8.77e-5

Table 2: The number of entities for each reconstruction and selection stage. The numbers are
evaluated using a factor of 10 larger exposure than will be used for the data analysis. The selection
efficiency indicates the ratio between the ‘Events’ and ‘Events (after final-selection)’.

background and signal efficiency that includes the expectation along with a standard deviation
for both the background and selection efficiency. A similar procedure was used by SNO [12] and
Super-K [13]. Table 3 provides the sensitivity using 372 seconds of exposure and accounting for
statistical uncertainty only.

Uncertainty assumed on signal and backgrounds Sensitivity (Rolke)
Finite MC Stat. 3.09 e+25 years

Table 3: 90% C.L. sensitivity for the n− n̄ oscillation lifetime assuming a 372 second exposure
in MicroBooNE considering only statistical uncertainties.

4 Conclusion

This note presents the methodology for the first-ever search for argon-bound neutron-antineutron
oscillation, using a 372-second exposure in the MicroBooNE LArTPC. The analysis and selection
makes use of state-of-the-art reconstruction tools, including deep learning methods developed for
LArTPC experiments, and has a signal efficiency of 73.6%. The sensitivity for the n − n̄ search
is calculated considering only statistical uncertainties. The analysis is ongoing. The effects of
various systematic uncertainties and validation with fake-data sample is being evaluated.
Although the n− n̄ search in MicroBooNE is not aimed to provide competitive limits, this anal-
ysis serves as a demonstration for the capability of future larger and well-shielded LArTPC’s,
including the future experiment DUNE, to perform such searches for baryon number violation
with high sensitivity.
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Appendices
A - Boosted Decision Tree

A preselection using a Boosted Decision Tree (BDT) is developed making use of topological
information only. The preselection aims to remove obvious cosmic clusters efficiently, thus forcing
the image based final selection to learn more intricate features of more obscure backgrounds
vs signal. The input variables for the BDT include topological information of the Wire-Cell
reconstructed clusters, such as the number of spacepoints associated with the cluster, and the
extent of the signature of the reconstructed interaction along the read-out channels (for the U,
V, and Y planes) and timing information. Figure 3 shows the distributions of the following five
variables for n− n̄ (blue) and cosmic (red) clusters.

• Spacepoints: the number of cells (i.e. spacepoints) in the cluster

• Time-tick extent: (max time slice value - min time slice value) in the cluster

• Y-plane extent: (max Y-plane channel - min Y-plane channel) in the cluster

• U-plane extent: (max U-plane channel - min U-plane channel) in the cluster

• V-plane extent: (max V-plane channel - min V-plane channel) in the cluster

The XGBoost framework [?] is used for BDT training, for 300 iterations. The training is done
using a statistically independent sample with sufficient statistics. Table 4 shows the selection
efficiency for n− n̄ and cosmic clusters with different BDT score cuts. Clusters with BDT score
> 0.1 are chosen for developing the final selection. It is worth mentioning that the cut is not
optimized based on any metric but is chosen to remove obvious cosmic backgrounds and retain
enough background for the next selection stage of image based analysis.

n− n̄ cosmic n−n̄√
(n−n̄+cosmic)

Nocut 26,525 237062
0.05 24,400 (91.99%) 41,965 (17.7%) 94.7
0.1 22,938 (86.48%) 20,342 (8.58%) 110.3
0.15 21,867 (82.44%) 11,901 (5.02%) 119.0
0.2 21,033 (79.30%) 7,707 (3.25%) 124.1
0.25 20,551 (77.48%) 5,903 (2.49%) 126.4

Table 4: Selection efficiency for n− n̄ clusters and cosmic clusters obtained by varying the BDT
cut. The BDT cut is chosen at 0.1, where the n − n̄ cluster efficiency is about 10 times higher
than cosmic cluster efficiency.

Signal n − n̄ clusters with different BDT scores are shown as 2D projections in Fig. 4. The
left-hand-side figure shows the projections of an n− n̄ cluster with a high BDT score (0.94). The
right-hand-side figure shows the projections of an n− n̄ cluster with a low BDT score (0.00145).
The topology-driven pre-selection BDT, since it does not take into account the charge deposition
associated with the spacepoint, can not differentiate a cosmic muon from such a straight line signal
topology. However, as we expect typically more than 2 daughter particles in the pair-annihilation,
such a topology is not frequent in the n− n̄ clusters.
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Figure 3: Distributions for topological variables from 2D cluster projections for n− n̄ and cosmic
clusters. These variables are used for the BDT pre-selection.
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Figure 4: (left) n− n̄ cluster passing the BDT pre-selection with BDT score 0.94. (right) n− n̄
cluster failing the BDT pre-selection with BDT score 0.00145.

B - Convolution Neural Network

A sparse CNN-based classification is used to develop the final selection of this analysis us-
ing the preselected n − n̄ and cosmic clusters. The 2D projections of the clusters, as shown in
Fig. 5, on MicroBooNE’s three planes (U, V, Y) are used as the CNN input. The CNN is trained
and tested using statistically independent samples. The training quality is monitored using two
metrics: training loss and accuracy. The training loss is a summation of the errors made for
each iteration during training: the lower the loss, the better a model. However, the accuracy
is determined on the final BDT iteration. Figure 6 shows the training loss (left) and accuracy
(right) over 20000 iterations.

Figure 5: (left) 2D projection of signal cluster on conventional representation. (right) The same
cluster using sparsified columnar representation.

Section 2 shows the CNN training results and optimization of the final CNN selection cut. In
this section, 2D projections of some clusters passing the final selection (CNN>0.800) are shown
for well-classified cases and otherwise. Figure 7 shows the 2D projections of n− n̄ clusters passing
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Figure 6: (left)Monitored training loss over iterations. (right)Monitored validation accuracy
over iterations. The current accuracy is shown as green solid line, the best accuracy is shown as
blue solid line.

the final selection with high CNN score. Notice the U plane projection of the left-hand-side cluster
is very small, and thus looks discrete due to binning. The Y-plane, and V-plane projections show
the more familiar signal topology; thus, this event scores highly on CNN classification when all
planes are considered. The right-hand-side cluster demonstrates the inefficacy of U plane and V
plane wires. However, the cluster is still highly scored on the CNN classification.

Figure 7: (left) n− n̄ cluster passing the BDT pre-selection with BDT score 0.981 and passing
CNN selection with CNN score 0.8036. (right) n − n̄ cluster passing the BDT pre-selection with
BDT score 0.947 and passing the CNN selection with CNN score 0.804.

Some signal clusters failed to pass the final selection as shown in Fig. 8. The left-hand-side
cluster shows no reconstructed space-points on the Y-plane, and insignificant reconstruction on
the U-plane. Both U-plane and V-plane signatures are small in time and wire axes. The right-
hand-side cluster shows small extents on both axes as well. These clusters do not display the
signature “star-like” topology and are classified with a low CNN score.
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Figure 8: (left) n − n̄ cluster passing the BDT pre-selection with BDT score 0.177 and failing
CNN selection with CNN score 0.737. (right) n − n̄ cluster passing the BDT pre-selection with
BDT score 0.221 and failing the CNN selection with CNN score 0.662.

C - Simulated Event Display

The event display in Fig 9 represents the final selected cluster using Wire-Cell reconstruction.

Figure 9: Simulated event display showing one n − n̄ simulated event. The x-axis represents z
direction (beam direction) and y-axis is the vertical direction. The view in this image is front view
(YZ) of the detector. Color represents charge deposition. The signal cluster shown here represents
the final selected cluster using Wire-Cell reconstruction.
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