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Abstract

This note presents current progress for a neutron-antineutron oscillation (n− n̄) search in
MicroBooNE paving the way for the first search analysis of such process in a Liquid Argon
Time Projection Chamber (LArTPC). Convolutional Neural Network (CNN) and Boosted
Decision Tree (BDT) algorithms were used to select signal n − n̄ events over cosmogenic
backgrounds. The CNN-only, BDT-only, and the combined (CNN+BDT) methods were
demonstrated on the Monte-Carlo signal and background events. Validation of the CNN-
only and the BDT-only methods was carried out on a small dataset of MicroBooNE Run1
off-beam data, setting the starting point toward further improvement of the analysis.
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1 Introduction

Neutron-antineutron oscillation is a baryon number (B) violating process (∆B = 2) predicted
by theories beyond the Standard Model [1, 2]. This process can be searched for, experimentally,
with free neutron beams (see, e.g. [3]) or with nucleus-bound neutrons in large, underground
detectors well-shielded from backgrounds.

In nucleus-bound neutron oscillation, a neutron inside a parent nucleus spontaneously transi-
tions (“oscillates”) into an antineutron, with a probability determined by the mean vacuum (free)
n− n̄ transformation period as well as a nucleus-dependent nuclear suppression factor, given that
the oscillation takes place within a strong potential. For argon, nuclear suppression factors have
been theoretically estimated to be TArR = 5.6× 1022s−1[4].

Following this oscillation, the resulting antineutron annihilates with a neighboring nucleon;
free nucleon-antineutron annihilation at rest is expected to result in, typically, 3-5 final state
pions, with a net momentum of zero and a total energy corresponding to the sum of the two
nucleon masses. The branching ratios of this annihilation process are shown in Tab. 1. In the
case of bound neutron oscillation searches, because this process is expected to take place inside
a nucleus, initial and final state nuclear effects such as Fermi motion of the original neutron, and
hardonic interactions of final state pions as they exit the nucleus, come into effect, and distort this
predicted annihilation signature. Such effects can be modeled using a number of generators; for
the analysis presented in this note, the GENIE event generator [5] v3.0.2 is used to fully simulate
this process, including nuclear effects.

(n̄, p) (n̄, n)
channel branching ratio channel branching ratio
π+π0 1% π+π− 2%
π+2π0 8% 2π0 1.5%
π+3π0 10% π+π−π0 6.5%
2π+π−π0 22% π+π−2π0 11%
2π+π−2π0 36% π+π−3π0 28%
2π+π−2ω 16% 2π+2π− 7%
3π+2π−π0 7% 2π+2π−π0 24%

2π+2π−ω0 10%
2π+2π−2π0 10%

Table 1: Effective branching ratios of (n̄, p) and (n̄, n) annihilation for argon, excerpted from
Table 5.3 of [6].

The future Deep Underground Neutrino Experiment (DUNE) is projected to be able to search
for argon-bound neutron oscillations into antineutrons with sensitivity which represents a factor
of 1.5 improvement [7] relative to the current best limits to bound neutron oscillations, from
Super-Kamiokande [8]. The DUNE analysis in [7] uses machine learning techniques, in particular
image analysis of event-level information, using Convolutional Neural Networks (CNNs), trained
and tested with simulations. Image analysis techniques especially involving deep learning have
generally shown great promise and excellent performance in applications to liquid argon time
projection chamber (LArTPC) data analysis. For example, MicroBooNE has demonstrated suc-
cessful neutrino interaction identification and final state particle classification [9] and pixel-type
identification [10] using such techniques.

The analysis presented in this note seeks to demonstrate that event-level identification using
image analysis is a viable application for rare event searches in LArTPC’s, and furthermore aims
to provide the first ever search for argon-bound neutron-antineutron oscillation in a LArTPC,
using MicroBooNE data. Even though the MicroBooNE detector size is too small to provide
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competitive limits, and overwhelmed with cosmogenic activity as it is operating on-surface rather
than deep underground, it will serve as a valuable first step toward realizing DUNE’s future search
with significantly higher sensitivity.

In the following section, we describe the neutron-antineutron oscillation search analysis fol-
lowed by MicroBooNE, adapted from [7]. Next, we present preliminary results; specifically, we
show data-to-Monte Carlo comparisons with a small sample of unblinded data from MicroBooNE’s
Run 1. Finally, we provide, as an example, MicroBooNE’s projected sensitivity with the full Run
1 data set, using unoptimized final selection cuts.

2 Analysis Overview

Both the DUNE and MicroBooNE neutron-antineutron oscillation searches use traditional
reconstruction and image-based analysis to select events consistent with a neutron-antineutron
oscillation signature, and to isolate them from cosmogenic or atmospheric neutrino backgrounds.
Traditional reconstruction makes use of the Pandora reconstruction framework for LArTPCs [11]
and BDT-based selection, while image-based analysis makes use of classification of images using
CNNs.

The BDT analysis makes use of different kinematic features between signal and background
events. The image classification-based analysis makes use of different topological features between
signal and background. The addition of the CNN classification score as a BDT input variable
allows the BDT to learn about kinematic features and topological features at the same time.
When including the CNN classification score as one of the BDT variables, this is referred to as
the (BDT+CNN) “combined analysis”. The combined analysis scheme is shown in Fig. 1.

Figure 1: Analysis flow diagram using the (CNN+BDT) combined analysis.

Alternatively, a traditional BDT-only analysis or CNN-only analysis is possible. In the former
case, the BDT is trained and optimized without the CNN score as one of the input parameters; in
the latter, the CNN score is the sole classifier of signal and background events used in the event
selection. In this note, we compare results from both of these to the combined analysis.

All three MicroBooNE analyses (combined, BDT-only, and CNN-only), are trained using
Monte Carlo simulations. The BDT-only and the CNN-only methods are tested on a small set of
data recorded with an unbiased, random trigger during MicroBooNE’s Run 1. The total Run 1
data correspond to an exposure of approx. 1400 seconds; the data used for comparisons shown in
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this note correspond to an exposure of 0.82 seconds and 7.34 seconds for CNN-only and BDT-only,
respectively.

The CNN training makes use of MicroBooNE signal and background Monte Carlo (MC) events.
The CNN input images are constructed from collection plane wire waveforms, after hit reconstruc-
tion; each of the 3200 collection wire waveforms spans over 3.2 milliseconds of integrated readout
time, digitized at 2MHz. Each of these images therefore corresponds to a 6400×3200 pixel image,
but is then down-sampled to 400×400 before network training. Example signal and background
input images (serving as “event displays”) after down-sampling are shown in Fig. 2.

Figure 2: Left: Signal event display showing the n− n̄ signal process, with the signature shown
on the top left corner, overlaid with cosmic MC, generated using MicroBooNE GENIE n − n̄
generation and CORSIKA[12] simulation, respectively. Middle: cosmic MC event display us-
ing MicroBooNE CORSIKA simulation only. Right: Example MicroBooNE off-beam data event
(expected to be cosmic dominated). Collection plane only information is shown.

The BDT inputs use Pandora event reconstruction information, for the same MicroBooNE
simulation. Pandora reconstructed “slice”(candidate neutrino interaction) selection is used to
select candidate non-cosmic events, and properties of the tracks and showers associated with the
selected slice are used for BDT inputs. Figure 3 shows distributions of some example BDT input
variables, while the full list of BDT input variables is provided below:

• Highest (candidate interaction) slice score

• Total track energy

• Total shower energy

• Number of tracks within slice

• Leading-energy track energy

• Subleading-energy track energy

• Leading-energy shower energy

• Subleading-energy shower energy

• Leading-energy track vertex x-position

• Leading-energy track vertex y-position

• Leading-energy track vertex z-position

In the case of the combined analysis, the CNN classification score is added to the above list,
and the BDT is retrained.

The following section provides preliminary results using CNN-only, BDT-only, and combined
analyses.
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Figure 3: Examples of BDT input variables for cosmic MC (shown as orange histograms) and
n − n̄ signal (shown as blue histograms). Left: total shower energy, in MeV. Middle: total track
energy, in MeV. Right: track multiplicity. Each histogram is arbitrarily normalized.

3 Preliminary Results

3.1 CNN-only analysis

The CNN image-based classification shows promising results in separating signal and back-
ground MC events. The CNN score distributions for signal MC and background MC events are
shown in Fig. 4. Efficiency and background rejection performance for the CNN-only method is
shown in Tab. 2 and Fig. 10.

Figure 4: CNN classification score distributions for n− n̄ and cosmic background MC. A score
of 1 indicates an n− n̄-like event; a score of 0 indicates a cosmic-like event.

The trained network can be tested using a small subset (< 0.1%) of available Run 1 Mi-
croBooNE off-beam data, corresponding to 0.82 seconds of exposure. This is shown in Fig. 5,
where it is evident that the CNN score distribution of off-beam data is not consistent with that
of background MC. This discrepancy in CNN response between cosmogenic MC and off-beam
data is currently understood to be due to imperfect modeling of the cosmic flux and/or detector
response1, and illustrates the challenge in applying MC-only-trained deep learning selections for
physics data analysis. Since detector response effectively acts as a combination of “filters” on
recorded data, one possible method to relieve this issue is adopting another CNN as part of the
analysis, whose sole task is to explicitly target learning the “image stylistic” differences between
MC-generated images and data images (see, e.g. [13]). The exploration of this method is on-going,
for inclusion in the final analysis.

1Note that other MicroBooNE analyses currently make use of data overlays to emulate cosmogenic backgrounds
and better approximate detector effects such as electronics noise.
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Figure 5: Shape-only comparison of CNN classification score distributions for MicroBooNE
off-beam data (shown as green histogram, and expected to be cosmic-dominated) and cosmic back-
ground MC (shown as orange histogram).

3.2 BDT-only analysis

Figure 6 shows the BDT classification performance when trained using only reconstructed kine-
matics variables for the signal and background MC events. Efficiency and background rejection
performance for the BDT-only method is shown in Tab. 2 and Fig. 10.

The BDT response is also tested using MicroBooNE off-beam data corresponding to 7.34
seconds of exposure, as shown in Fig. 7. The BDT score distribution for the off-beam data, like
the CNN score distribution, also shows a different shape from the cosmic MC, having peaks on
both edges of the distribution. This discrepancy, as in the case of the one for CNN response, is
understood to be due to imperfect modeling of the cosmic flux and/or detector response1.

Figure 6: BDT score distributions for MC cosmic background (shown as red histogram) and
n− n̄ signal (shown as blue histogram).

Event displays of off-beam events with low BDT scores are shown in Fig. 8, while event displays
of off-beam events with high BDT scores are shown in Fig. 9. When tens of event displays events
were examined visually, the events with high BDT scores were found to contain more TPC activity
than the events with low BDT scores, on average.
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Figure 7: Right: BDT score distribution for MicroBooNE off-beam data (expected to be cosmic-
dominated).

Figure 8: Collection plane event displays from MicroBooNE Gallery event display for low-scoring
data events with the BDT-only analysis. BDT scores for top, middle, and bottom correspond to
0.0043, 0.0078, and 0.0027.
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Figure 9: Collection plane event displays from MicroBooNE Gallery event display for high-
scoring data events with the BDT-only analysis. BDT scores for top, middle, and bottom corre-
spond to 0.968, 0.957, and 0.961.

3.3 Combined analysis

Preliminary classification performance using the (BDT+CNN) combined analysis is shown in
Tab. 2, and compared to the performance of the BDT-only and CNN-only methods. Figure 10
shows the curves for background rejection rate vs. signal selection efficiency, where the former
is defined as 1 minus background selection efficiency, for each method. The CNN-only method
performs better than BDT-only. The BDT+CNN combined method shows similar performance
as the CNN-only case.

The curve for the combined selection can be used to optimize sensitivity to a search for neutron-
antineutron oscillation. Here, we show examples of background and signal predictions expected
for an exposure of ∼ 1400 seconds allowed by off-beam triggers during the Run 1 of MicroBooNE.
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Background
rejection rate

BDT
signal eff.

CNN
signal eff.

BDT+CNN
signal eff.

0.990 0.437 0.736 0.712
0.950 0.623 0.905 0.907
0.900 0.689 0.938 0.944
0.800 0.764 0.966 0.968
0.700 0.811 0.979 0.979
0.600 0.853 0.986 0.985
0.500 0.888 0.991 0.989

Table 2: Signal selection efficiencies using BDT-only (second column), CNN-only (third column),
and BDT+CNN combined (fourth column) selections for a given background rejection rate (first
column).

Figure 10: Background rejection rate versus n− n̄ signal efficiency achieved with the BDT-only
(orange), CNN-only (blue), and BDT+CNN combined (green) analyses.

This exposure was calculated assuming 3.2 ms of off-beam trigger duration and 430,000 triggered
events of the collected MicroBooNE Run 1 off-beam data. The cuts used for the BDT+CNN
combined method have not been optimized to yield maximal sensitivity; instead, an example cut
of BDT+CNN combined score at 0.996 is used, corresponding to a background rejection rate of
99% and signal selection efficiency of 71.5%. The resulting background and signal predictions
are shown as a stacked histogram with statistical errors in Fig. 11 as a function of BDT+CNN
combined BDT score; in Fig. 12 as a function of CNN score; in Fig. 13 as a function of total
reconstructed energy.
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Figure 11: Combined score distribution for the (unoptimized) BDT+CNN combined selection,
where the combined score cut is placed at a value that gives 99% rejection of the background
cosmics. The background is absolutely normalized to the exposure of the off-beam data collected in
MicroBooNE during the Run 1 period. The n−n̄ signal is normalized to an arbitrary normalization
of 1000 n− n̄ signal events in the MicroBooNE TPC during Run 1, which corresponds to τn−n̄ =
1.27×1024 years. This corresponds to 150×106 times the current Super-K limit measured in H2O,
and it uses a nuclear suppression factor of 0.517× 1023s−1.

Figure 12: CNN score distribution for the (unoptimized) BDT+CNN combined selection, where
the combined score cut is placed at a value that gives 99% rejection of the background cosmics.
The background is normalized to the off-beam data collected in MicroBooNE during the Run 1
period. The n− n̄ signal is normalized to an arbitrary normalization of 1000 n− n̄ signal events
in the MicroBooNE TPC during Run 1, which corresponds to τn−n̄ = 1.27 × 1024 years. This
corresponds to 150×106 times the current Super-K limit measured in H2O, and it uses a nuclear
suppression factor of 0.517× 1023s−1.
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Figure 13: Collected energy distribution from reconstructed showers and tracks, for the (unop-
timized) BDT+CNN combined selection, where the combined score cut is placed at a value that
gives 99% rejection of the background cosmics. The background is normalized to the off-beam data
collected in MicroBooNE during the Run 1 period. The n− n̄ signal is normalized to an arbitrary
normalization of 1000 n − n̄ signal events in the MicroBooNE TPC during Run 1, which corre-
sponds to τn−n̄ = 1.27× 1024 years. This corresponds to 150×106 times the current Super-K limit
measured in H2O, and it uses a nuclear suppression factor of 0.517× 1023s−1.

An example (unoptimized) sensitivity projection can be provided by placing the combined
BDT+CNN score cut at 0.9998. The sensitivity of the n − n̄ lifetime can be determined for
a given exposure (E in (neutron-years)), given the efficiency of selecting signal events (ε), and
the background rate (b), along with their corresponding uncertainties. Equation 1 shows the
probability distribution of n − n̄ oscillation lifetime for a given observed number of events (n),
using Bayesian assumption where P (E), P (ε), and P (b) are Gaussian priors with the uncertainties
of E, ε, and b.

P (Γ|n) = A

∫ ∫ ∫
e−(ΓεE+b)(ΓεE + b)n

n!
P (Γ)P (E)P (ε)P (b)dEdεdb , (1)

The 90% C.L. value for the n− n̄ oscillation lifetime can be found by evaluating the value of
Γ0.9 that covers 90% of the total integral domain in the integral Eq. 1:

90% =

∫ Γ0.9

Γ=0
P (Γ|n)dΓ∫∞

Γ=0
P (Γ|n)dΓ

. (2)

When Γ0.9 in Eq.2 is found, the corresponding n− n̄ lifetime is given by:

Tn−n̄ =
1

Γ0.9

. (3)

The systematic uncertainties of E, ε, and b are set to be 3%, 15%, and 15%, in order to
evaluate the preliminary limit, as an example. These uncertainties will be reassessed after careful
systematic considerations on the signal efficiency and background efficiency of the final selection.
The projected sensitivity with the unoptimized combined BDT+CNN score cut at 0.9998 and the
above uncertainty assumptions would correspond to a limit of 1.81 × 1025 years at 90% C.L. for
an exposure of 1.18× 1027 neutron-years. This exposure corresponds to the entirety of Run 1 off-
beam data collected in MicroBooNE. Combined score cut optimization, as well as an increase in
exposure by incorporating additional data from Runs 2-5 of MicroBooNE is expected to improve
the sensitivity.
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4 Conclusions

An analysis that makes use of traditional reconstruction and deep learning based image anal-
ysis techniques has been developed to perform the first LArTPC-based search for argon-bound
neutron-antineutron oscillation. The analysis is being validated on a small sample of MicroBooNE
data. Although MicroBooNE is not projected to yield competitive limits to this process, because
of its small size and on-surface location, this analysis serves as an important first step toward a
high-sensitivity search for this process with the future DUNE detector.

The MicroBooNE analysis is ongoing, targeting further improvements in data-MC agreement
from new techniques developed for image analysis, and an improved assessment of systematic
uncertainties, in particular from intranuclear interaction modeling of signal, cosmic background
modeling, and detector response.
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