
Semantic Segmentation with Sparse
Convolutional Neural Network for Event

Reconstruction in MicroBooNE
MicroBooNE-Note-1091-Pub

MicroBooNE Collaboration

June 2020

E-mail: microboone_info@fnal.gov

Abstract

We present the performance of a semantic segmentation network,
SparseSSNet that provides pixel-level classification of MicroBooNE
data. MicroBooNE is a short baseline neutrino oscillation experiment
employing a liquid argon time projection chamber detector. SparseSS-
Net is a submanifold sparse convolutional neural network and the first
machine learning based algorithm applied to one of MicroBooNE’s sig-
nature νe appearance oscillation analyses. The network is trained to
segment five types of classes relevant to this analysis; however those
are re-classified into two track and shower. The improvement of this
network with respect to previous algorithm is both in accuracy and
computing resource utilization. The accuracy achieved on the test
sample is ≥ 99% out of all non-zero pixels; for full neutrino interac-
tion simulations, the time for processing one image is ∼ 0.5 sec and
the memory is O(GB), which allows utilizing CPU worker machines at
FNAL and the Open Science Grid, without adaptations.

1 Introduction
The main goal of the MicroBooNE experiment is to search for Low Energy
Excess (LEE) electron like events, specifically in the region seen by the Mini-
BooNE experiment [1]. As the dominant cross section in the observed LEE
energy range is Charge Current Quasi-Elastic (CCQE), the approach adopted

1

by the Deep Learning (DL) LEE analysis is to isolate highly pure data sam-
ples of CCQE νe (νµ) interactions. The topology of these interactions are
fairly simple and manifest in most case as 1 lepton and 1 proton; where the
lepton is either an electron or a muon for νe or νµ respectively. The outgoing
proton generates a short track and is common to both interactions; however
the outgoing lepton produces a shower or track depending upon whether it is
an electron or a muon. Therefore classifying outgoing particles whether they
produce a shower or a track is crucial for this analysis. Convolutional Neural
Networks (CNN) are the state of the art algorithm for solving many prob-
lems among the task of semantic segmentation [2]. In this note, we describe
a deep learning based algorithm to distinguish showers from tracks in data
from the MicroBooNE Liquid Argon Time Projection Chamber (LArTPC).

The MicroBooNE detector [3] operating at the Booster Neutrino Beam
(BNB) at Fermilab, consist of a ∼ 170 ton Liquid Argon Time Projection
Chamber (LArTPC). The charge readout is done by three wire planes; two
induction planes (U and V) and one collection plane (Y). In the DL-LEE
analysis the data is represented as a set of 2-dimensional images (one for
each wire plane), with wire number along the x-axis and drift time along the
y-axis. The intensity of each “pixel” is given by the sum of the noise-filtered,
deconvolved signal from six TPC time-ticks (3µs) [4].

After applying a set of initial data selection criteria for reducing low
energy backgrounds and tracks originating from cosmic muons, the images
are fed into a CNN in order to semantic segment them, i.e., dividing the
“pixels” into various classes. The output of the network is a normalized
probability vector (also referred as scores) for each class (~p), the predicted
label is then defined to be the class with the highest probability.

Within the current DL-LEE analysis there are only two classes track and
shower; however the network is able to distinguish five different classes Highly
Ionizing Particles (HIP); Minimum Ionizing Particle (MIP); shower; delta;
and Michel which are re-classified into two classes where track consist of HIP
and MIP and shower consist of shower, delta, and Michel.

2 The Network

The current network, “SparseSSNet” (Sparse Semantic Segmentation Net-
work) is a modification over “SSNet” [5], in which the image data is processed
as a sparse matrix as opposed to a dense matrix [6]. Using SpaseSSNet pro-
vides several benefits over using the dense SSNet. First it allows for training
on smaller images than the inferred ones; therefore, although the training
images are only 512 X 512 pixels, the inferred images can be much larger, for

2

instance 1008 X 3456 pixels. Thus, unlike in the dense representation where
the inferred image is too large to be processed on a standard GPU and had
to be cropped into ∼ 64 images, in the sparse representation, the entire im-
age can be processed and no cropping is needed. In addition, the nature of
the sparse representation as well as fewer images to process (no cropping)
improves drastically the time for processing an event from ∼ 64× 5 s (for 64
crops) to (∼ 0.5) s. Moreover as pixels of no interest (e.g., 0 intensity) are
not saved, the memory consumption is reduced as well from ∼ 6GB/crop
to ∼ 1GB/image. Due to these two advantages the image inferring can be
done utilizing worker machines at FNAL and the Open Science Grid, without
“optimization” of the network.

The architecture of the network (U-Res-Net) is a hybrid of U-Net [7] and
Res-Net [8]. The network is constructed with 32 filters in the initial layer and
has 5 layers. A softmax1 classifier and a cross entropy loss function summed
over all non-zero pixels is used. In addition a weighting scheme is applied
for preventing class imbalance (see section 4). A designated set of network
weights is derived for each plane and no data is shared between the different
planes.

Prior to training SparseSSNet masking is performed on the image which
distinguishes between important and non important pixels. In this analysis
all pixels with intensity < 10 or > 300 are not included in the sparse repre-
sentation, which reduces the number of pixels to ∼ 0.5% of the total pixels
in an image. Once a pixel is not included in the sparse representation, it is
disregarded and not stored; moreover pixels which do no pass the masking
process cannot appear in hidden layers due to convolutional operations (see
fig. 1). This prevents “dialation”of the image and improves the accuracy of
the network.

3 The Data samples

We perform a supervised learning. The data samples consist of ∼ 143, 000
images with pixel intensity. Pixels with ionization associated with a certain
particle are defined as a cluster. For each event particle propagation as well
as detector effects are applied to derive the final input image.

1Softmax is a mathematical function that takes as input a vector of real numbers,
and maps it into a probabilities summed to one, with larger input values corresponding to
higher probabilities.

3

Figure 1: Top) an example of an image getting dilated after two convolutional
layers using a kernel with size 3 X 3, weights 1 / 9, and stride 1. Bottom)
a non dilated image, the green label represents pixels which are kept for
consecutive layers and the red pixels represents pixels which were supposed
to get values in regular CNNs however are not in SparseSSNet

3.1 The Particle Sample

For each image a random location in the detector is drawn from a uniform
distribution, and a “Particle Bomb” is generated originating at that location
to mimic an interaction point. The particle bomb is produced by generating
a random number of particles drawn from a uniform distribution in the range
of [1, 6], the direction of each particle is chosen from an isotropic distribu-
tion. The number of particles from a specific type which can be produced
is shown in table 1. ∼ 85% of the sample contains particles with typical ki-
netic energies (Ek) produced upon neutrino interactions within MicroBooNE
the energy range (E) for this sample for each particle is shown in table 1
a smaller sample ∼ 15% is generated with different configuration which are
more oriented to low energy interactions as particle identification becomes
more difficult. The momentum (P) range for each particle from the low en-
ergy sample is shown in table 1. Finally a random number of muons in the
range of [5, 10] are generated in both samples to mimic cosmic rays. The
data sample is divided into two: a training sample (∼ 120k images) and a
test sample (∼ 23k images).

4

Particle e γ µ π± p cosmic µ
Multiplicity 0–2 0–2 0–2 0–2 0–3 5–10
Ek [MeV] 50 -1,000 50–1,000 50–3,000 50-2,000 50–4,000 5,000–20,000
P (low E) [MeV/c] 30–100 30–100 85–175 95–195 300–450 5,000–20,000 (Ek)

Table 1: The data sample particle content. For each particle type the mul-
tiplicity/event, the kinetic energy range for the regular sample, and the mo-
mentum for the low E sample is given. Notice that unlike the particles
originating at the simulated “interaction point” the cosmic muons for the low
E sample are still defined by their kinetic energy as they are the same for
both samples.

3.2 Labels

There are five labels for the supervised learning.

1. HIP, protons, typically manifests in a short highly ionized track.

2. MIP, muons and charged pions, typically manifests in a longer track.

3. Shower, induced by electrons, positrons, and photons above a minimal
energy (∼ 33MeV in LAr).

4. Delta rays, electrons from hard scattering of other charged particles,
mainly muons.

5. Michel electrons, produced from a decay of muons.

Within the DL-LEE analysis these are re-classified into two classes

1. Track, instead of the HIP and MIP labels.

2. Shower, instead of the shower, delta ray, and Michel electron labels.

Notice that the re-classification does not require new inferring; rather it is
just a mapping of these original five labels to the newly defined two labels.

4 Pixel Weighting Scheme
To prevent class imbalance, a case where one class is dominating the loss
function and the penalty for incorrect predicting of other classes is negligible,
we apply a pixel weighting scheme, defining the loss function

Loss = Σiwi · (~li · log(~Pi)) (1)

5

where wi is the weight defined for each pixel, ~li is the label vector of pixel i
(e.g., (1,0,0,0,0) for a HIP) and ~Pi is the softmax probability vector for pixel
i.

The sum of two types of weighting is assigned to each pixel: Cluster
weighting and vertex weighting (see fig. 2) .

• Cluster weighting: big clusters contain many pixels, which makes it
easier to correctly label as there is more information. Labeling a big
cluster correctly reduces the loss function by a large amount. Small
clusters should therefore be treated with more care to prevent the loss
function of being governed by one correctly labeled big cluster. We
apply a weight which is inversely proportional to the size of the cluster
in the range of (0.02 − 2) × 10−2

• Vertex Weighting: pixels at center of a cluster are easier to identify
as they cannot be confused by other pixels in their close vicinity. How-
ever, pixels near “different label” clusters are the hardest to recognize
and impact vertex reconstruction dramatically. We apply a 0.02 weight
to pixels within three pixel distance from a pixel with a different label,
and zero to all other pixels.

Figure 2: Example from the test data sample. Left) The labels assigned
for each pixel according to generated particles. Right) Weighting scheme:
for each cluster a weight proportional to the inverse of its size is assigned
([2 × 10−4 − 2 × 10−2]). For crossing type pixels a weight of 2 × 10−2 is
assigned.

6

5 Results
The accuracy (with respect to non-zero pixels only) and loss on the training
sample both with and without weighting is shown in fig. 3, along with the
accuracy on the test sample.

The five class semantic segmentation confusion matrices obtained from
the test sample for the Y plane is shown in fig. 4. The matrices for the U
and V planes are fairly similar and are presented in appendix A. The number
of pixels obtained for each class is > 105; thus statistical uncertainties are
negligible.

By re-classifying and defining the track (HIP, MIP) and shower (shower,
delta, Michel) classes, the two class semantic segmentation confusion matrices
can be obtained for each plane (see fig. 5). The number of pixels obtained
for each class is >107; thus statistical uncertainties are negligible.

An example of an event from the test sample is presented in fig. 6. This
display encapsulates the weighting scheme and the performance of the net-
work and contains the pixel intensity, the truth level label, the weight applied
to each pixel, and the SparseSSNet predictions. For more event displays see
appendix B.

Finally, examples of simulated νe and νµ from the MicroBooNE detector
are shown in fig. 7 and fig. 9 respectively. Zoomed in versions of this events are
shown in fig. 8 and fig. 10 respectively. Each figure consists of the generated
interaction particles type (top), the ADC counts of the generated interaction
overlaid with cosmic rays extracted from off-beam data samples (middle), and
the SparseSSNet predictions (bottom). For more event displays supporting
the consistency of the results see appendix C.

7

Figure 3: The accuracy and loss of the network on the training and inference,
Y plane data sets. The accuracy before (orange) and after (peru) applying
weighting, the loss function normalized by the loss after first iteration be-
fore (blue) and after (light blue) applying weighting. The accuracy on the
inference data sample is indicated in black. The selected network weights is
indicated by the red dot. The bottom plots are zoomed in.

8

Figure 4: Five class confusion matrices obtained from validation sample for
the Y-Plane, each box represents the fraction of pixels which are from the
class stated on x-axis and predicted as class stated in y axis from the test
sample. The smallest number of pixels is O(105) for Michel all other classes
vary between 106 − 107 pixels.

9

(a)

(b)

(c)

Figure 5: Two class confusion matrices for all three planes, obtained from
re-normalizing the five class matrices. Each box represents the fraction of
pixels which are from the class stated on x-axis and predicted as class stated
in y axis from the test sample. The number of pixels associated with each
class is O(107) pixels.

10

Figure 6: An example of an event from the test sample. Top left) pixel
intensity (ADC). Top right) truth label. Bottom left) weight applied to each
pixel. Bottom right) SpsarseSSNet predictions

11

Figure 7: An example of a νe interaction. Top) the produced particles upon
interaction. Middle) pixel intensity of interaction overlaid with cosmic rays.
Bottom) SparseSSNet predictions.

12

Figure 8: A zoomed version of fig. 7 of a νe interaction. Top) the produced
particles upon interaction. Middle) pixel intensity of interaction overlaid
with cosmic rays. Bottom) SparseSSNet predictions

13

Figure 9: An example of a νµ interaction. Top) the produced particles upon
interaction. Middle) pixel intensity of interaction overlaid with cosmic rays.
Bottom) SparseSSNet predictions.

14

Figure 10: A zoomed version of fig. 9 of a νe interaction. Top) the produced
particles upon interaction. Middle) pixel intensity of interaction overlaid
with cosmic rays. Bottom) SparseSSNet predictions

15

6 Summary

We have presented the performance of SparseSSNet in the task of semantic
segmentation on simulated data from the MicroBooNE detector. This is
the first machine learning algorithm in the DL-LEE analysis chain. The
adaptation to sparse representation improves dramatically the inference time
from ∼ 64 × 5 s to ∼ 0.5 s as well as the memory usage from ∼ 64 × 5GB
to ∼ 1GB1, where the 64 stands for the amount of cropped image needed
per event. In addition there is an improvement in the accuracy on the test
sample due to no dilation. The current analysis uses only two classes (track
and shower), however the network produces five class segmentation which we
hope to exploited in future analyses.

References

[1] A.A. Aguilar-Arevalo et al. Significant Excess of ElectronLike Events in
the MiniBooNE Short-Baseline Neutrino Experiment. Phys. Rev. Lett.,
121(22):221801, 2018.

[2] Y. LeCun, Y. Bengio, and G.Hinton. Deep learning. Nature, 521:436,
2015.

[3] R. Acciarri et al. Design and Construction of the MicroBooNE Detector.
JINST, 12(02):P02017, 2017.

[4] R. Acciarri et al. Noise Characterization and Filtering in the MicroBooNE
Liquid Argon TPC. JINST, 12(08):P08003, 2017.

[5] C. Adams et al. Deep neural network for pixel-level electromagnetic par-
ticle identification in the MicroBooNE liquid argon time projection cham-
ber. Phys. Rev. D, 99(9):092001, 2019.

[6] Benjamin Graham and Laurens van der Maaten. Submanifold sparse
convolutional networks. CoRR, abs/1706.01307, 2017.

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In Nassir Navab,
Joachim Hornegger, William M. Wells, and Alejandro F. Frangi, editors,
Medical Image Computing and Computer-Assisted Intervention – MIC-
CAI 2015, pages 234–241, Cham, 2015. Springer International Publishing.

1The performance test where done on a Intel core i7-8750H CPU 2.2GHz

16

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

17

A Confusion matrices
The confusion matrices of images from two induction planes, the results are
similar to the one presented in 4, and are added here for completeness.

Figure 11: Five class confusion matrices for the U-Plane, each box represents
the fraction of pixels which are from the class stated on x-axis and predicted
as class stated in y axis from the test sample. The smallest number of pixels
is O(105) for Michel. All other classes vary between 106 − 107 pixels.

18

Figure 12: Five class confusion matrices for the V-Plane, each box represents
the fraction of pixels which are from the class stated on x-axis and predicted
as class stated in y axis from the test sample. The smallest number of pixels
is O(105) for Michel all other classes vary between 106 − 107 pixels.

B Test sample event displays
More event displays from the test sample supporting the consistency of Spars-
eSSNet performance, as well as showing more information about the pixel-
weighting scheme.

19

Figure 13: An example of an event from the test sample. Top left) pixel
intensity (ADC). Top right) truth label. Bottom left) weight applied to each
pixel. Bottom right) SparseSSNet predictions

20

Figure 14: An example of an event from the test sample. Top left) pixel
intensity (ADC). Top right) truth label. Bottom left) weight applied to each
pixel. Bottom right) SparseSSNet predictions

21

Figure 15: An example of an event from the test sample. Top left) pixel
intensity (ADC). Top right) truth label. Bottom left) weight applied to each
pixel. Bottom right) SparseSSNet predictions

22

Figure 16: An example of an event from the test sample. Top left) pixel
intensity (ADC). Top right) truth label. Bottom left) weight applied to each
pixel. Bottom right) SparseSSNet predictions

23

Figure 17: An example of an event from the test sample. Top left) pixel
intensity (ADC). Top right) truth label. Bottom left) weight applied to each
pixel. Bottom right) SparseSSNet predictions

24

Figure 18: An example of an event from the test sample. Top left) pixel
intensity (ADC). Top right) truth label. Bottom left) weight applied to each
pixel. Bottom right) SparseSSNet predictions

25

C ν interaction event displays
Additional event displays from full ν interactions. These events support the
consistency of SparseSSNet performance on different track/shower sizes as
well as an example of a Michel electron (fig. 25)

Figure 19: An example of a νe interaction. Top) the produced particles upon
interaction. Middle) pixel intensity of interaction overlaid with cosmic rays.
Bottom) SparseSSNet predictions.

26

Figure 20: A zoomed version of fig. 19 of a νe interaction. Top) the produced
particles upon interaction. Middle) pixel intensity of interaction overlaid
with cosmic rays. Bottom) SparseSSNet predictions

27

Figure 21: An example of a νe interaction. Top) the produced particles upon
interaction. Middle) pixel intensity of interaction overlaid with cosmic rays.
Bottom) SparseSSNet predictions.

28

Figure 22: A zoomed version of fig. 21 of a νe interaction. Top) the produced
particles upon interaction. Middle) pixel intensity of interaction overlaid
with cosmic rays. Bottom) SparseSSNet predictions

29

Figure 23: An example of a νµ interaction. Top) the produced particles upon
interaction. Middle) pixel intensity of interaction overlaid with cosmic rays.
Bottom) SparseSSNet predictions.

30

Figure 24: A zoomed version of fig. 9 of a νµ interaction. Top) the produced
particles upon interaction. Middle) pixel intensity of interaction overlaid
with cosmic rays. Bottom) SparseSSNet predictions

31

Figure 25: An example of a νµ interaction. Top) the produced particles upon
interaction. Middle) pixel intensity of interaction overlaid with cosmic rays.
Bottom) SparseSSNet predictions.

32

Figure 26: A zoomed version of fig. 25 of a νµ interaction. Top) the produced
particles upon interaction. Middle) pixel intensity of interaction overlaid with
cosmic rays. Bottom) SparseSSNet predictions

33

	Introduction
	The Network
	The Data samples
	The Particle Sample
	Labels

	Pixel Weighting Scheme
	Results
	Summary
	Confusion matrices
	Test sample event displays
	 interaction event displays

