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Abstract

The uniquely detailed neutrino event information from liquid argon time projection cham-
bers allows reconstruction of a set of kinematic quantities that over-constrain the expecta-
tions for charged current quasielastic scattering (CCQE). MicroBooNE makes use of the
CCQE consistency requirements in a deep-learning-based search for the MiniBooNE low en-
ergy excess analysis. This requirement rejects backgrounds as well as events with poorly
reconstructed neutrino energy due to final state interactions of the outgoing proton.

The results presented here demonstrate the quality of the selection of νe and νµ events.
We show excellent agreement between the data and the simulation across many data sets.
This positions us to be ready to unblind the MicroBooNE low energy excess analysis in the
very near future.
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1 Introduction

Liquid argon time projection chambers (LArTPCs), such as the MicroBooNE detector, allow for
detailed, nearly-bubble-chamber-quality event reconstruction. The detector is composed of two
sub-systems, a set of 32 cryogenic Photo-Multiplier Tubes (PMT), and a Time Projection Chamber
(TPC). The detector design can be found in great details in [2]. Events consisting of two-body
interactions, such as charged current quasi-elastic scattering (CCQE), ν` + n → ` + p, can be
particularly well reconstructed for the cases where the lepton, `, and proton p traverse sufficient
distance to span multiple wires. Backgrounds can mimic this “1`1p” signature. However, one
can require the two-body scattering kinematics of the CCQE signal in order to greatly reduce
backgrounds, assuming that the paths of the neutrinos in the beam are parallel when they reach
the detector. In this analysis, we exploit the fact that, under the two-body scattering assumption,
the 1`1p CCQE signal is over-constrained. Thus, we can demand two-body scattering consistency
between the reconstructed kinematic variables to isolate highly pure 1µ1p and 1e1p CCQE samples.

Well-reconstructed two-body scatters are ideal for investigating the MiniBooNE “low energy
excess” (LEE) [7] [8] . The model for the LEE investigated here assumes that the excess derives
from CCνe-like interactions. In a highly pure analysis, like the one presented here, the background
to the LEE signal is dominated, by far, by the intrinsic νe in the beam. These produce CCQE
interactions that are typically, although not exclusively, at higher energy than the LEE signal.
Thus, if excellent energy resolution can be achieved, the intrinsic background can be separated
from the signal. Moreover, the analysis will use the νµ measured events to constrain the intrinsic νe
rate. Hence, excellent energy resolution on these events is also desirable. The two-body scattering
kinematics of the events in this analysis sample lead to excellent energy resolution.

The goal of this analysis is to isolate neutrino events in the energy range of 200 MeV to 1 GeV
that are consistent with the signature of CCQE in the rest frame of the neutron. We will consider
1e1p events, which will potentially include the signal of the LEE and also 1µ1p events that will
be used to constrain the systematic uncertainties and backgrounds. The largest backgrounds are
removed at the start of the analysis through minimum requirements for photo-electrons observed
in the photo-multiplier tubes, followed by application of a novel algorithm for removing cosmic
rays, called WireCell [3]. This analysis then makes use of Deep Learning techniques for track
versus shower identification (see Public Note 1091 [6]), as well as a specialized 3-D reconstruction
algorithm described in Ref. [5].

The analysis begins with cosmic ray identification. Reconstructed charge that is not associated
with cosmic rays is then passed to the pre-selections. These place requirements on light observed
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in the event, two-prong vertex within the fiducial volume, track containment within the active
volume, lepton energy > 35 MeV, proton energy > 60 MeV, opening angle > 0.5 radians and
agreement between total event energy and momentum, in order to select high-quality candidate
events for the next stage. Events are likely to have more than one vertex found. The vertices are
separated into those with track-like and shower-like leptons using Deep Learning metrics [4], and
then boosted decision trees (BDT) assign a probability to the vertex. The event vertex is the one
with the highest probability.

The kinematic constraints are then applied to the identified vertex to determine if this is a
CCQE event. We introduce the kinematic variables that are employed below. We use variables
reconstructed in the laboratory frame. We can also reconstruct the β and γ of the event, as
described below, allowing a boost back to the frame where the target neutron is at rest. This
is important for the consistency requirements we will use to reject backgrounds. The kinematic
constraints are introduced in the form of BDTs–the same that were used to identify the most likely
vertex. An important aspect of this analysis is to establish there is excellent agreement between
the BDT data inputs and outputs compared to the simulation across many data samples. This
will be shown in the note below and the appendices.

Finally, two Particle Identification Cuts are applied to the analysis to remove the small level
of remaining background from event mis-identification. The relevant algorithms are described in
Public Note 1080 and 1090. The first makes use of the deep-learning-based MPID algorithm. In
this case we cut events where there is a > 20% probability of a muon appearing in the event. The
second makes use of a second-shower-finding algorithm that identifies displaced electromagnetic
showers to allow for π0 identification, requiring π0 mass of < 50 MeV for an event to be selected.

In the following discussion, we describe how we construct variables to test the CCQE hypoth-
esis. We then describe the 1µ1p selection and compare with data. Because this is a blind analysis
that is not yet complete, we do not have access to the complete data set. However, we can com-
pare our predictions to data from a set of “open boxes.” We also compare our predictions to a set
of “blindness-safe plots” of variables that have less than 0.1σ significance for the predicted LEE
signal. Table 1 described the various data sets that appear in this report. Additional 1µ1p plots
are available in Appendix A. We demonstrate the consistency of this data set with the Micro-
BooNE flux and cross section, and discuss modeling issues. Then, we describe the 1e1p selection,
providing comparisons with open data sets as a proof of principle. Again, additional plots are a
provided in Appendix B.

The most important conclusions of this note will be:

• We can isolate a very pure sample of 1e1p and 1µ1p CCQE events.

• The selected data are in excellent agreement with the simulation.

This gives us confidence that the MicroBooNE Deep Learning Low Energy Excess analysis is
nearly ready to be unblinded.

2 Variables Used to Identify CCQE Interactions

The 3D reconstruction provides information on basic kinematic quantities in the lab frame. Below,
we describe how higher level kinematic quantities that will be used in the analysis are formed from
these basic quantities. We then describe how to boost to the frame where the nucleon momentum
is negligible, and reevaluate some of the event variables.
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Title of box Description Used for testing
4.4 × 1019 POT An unbiased sample of data from Run 1 1µ1p and 1e1p
5.3 × 1019 POT An unbiased sample of data from Run 3 added

to the 4.4 × 1019 POT sample 1µ1p and 1e1p
High Energy Box Eν > 700 MeV- open sideband from 4.8 × 1020 POT

sampled from Runs 1, 2 and 3) 1e1p
Blindness-safe histograms Plots derived from from 4.8 × 1020 POT.

No correlations between plots are available 1e1p

Table 1: Open boxes employed for studies of data compared to prediction.

2.1 Kinematic Variables in the Lab Frame

Kinematic variables provide the strongest source of signal identification. Insofar as only contained
events are considered, once the particles are identified, a LArTPC enables full 4-momentum re-
construction from the energies and angles. From here, virtually any useful kinematic quantity can
be reconstructed. The most useful of these and their associated definitions are summarized in
Table 2.
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Variable Name Definition
Base Variables

Ep Energy of proton determined from range
Eµ Energy of muon determined from range in detector
Ee Energy of electron determined from deposited charge

m`, mn, mp Masses of the lepton, neutron and proton
cos θp pzp/|~pp|
cos θ` pz`/|~p`|
φp atan2(pyp, p

x
p)

φ` atan2(py` , p
x
` )

Pp = (Ep, ~pp) Reconstructed 4-momentum of the proton
P` = (E`, ~p`) Reconstructed 4-momentum of the lepton

Eb Binding Energy for argon; the analysis assumes B = 28.5 MeV
Definitions Related to Neutrino Energy

Erange
ν

∗ Ep + E` − (mn − Eb)

EQE−p
ν

Ep(mn − Eb) + 1
2
(m2

` − (mn − Eb)2 −m2
p)

(mn − Eb) + |~pp|cosθp − Ep

EQE−`
ν

E`(mn − Eb) + 1
2
(m2

p − (mn − Eb)2 −m2
`)

(mn − Eb) + |~p`|cosθ` − E`

∆QE

√(
EQE−p
ν − EQE−`

ν

)2
+
(
EQE−p
ν − Erange

ν

)2
+
(
EQE−`
ν − Erange

ν

)2
* Unless explicitly noted otherwise, any reference to Eν in this

memo or histograms refer to Erangeν as reconstructed in the laboratory frame.

Event Kinematics
Q2 2Eν(E` − P z

` )−m2
`

Hadronic Mass (mhad) Eν − E`
Björken’s Scaling x (xBj) Q2/2mnmhad

Björken’s Scaling y (yBj) mhad/Eν

Opening angle cos−1(p̂` · p̂p)

pT
√

(px` + pxp)
2 + (py` + pyp)2

pL pzp + pz`

αT cos−1
(
− ~p `

T · ~pT
|~pT ||~p `|

)
φT cos−1

(
− ~p `

T · ~p
p
T

|~p p
T ||~p `|

)
Table 2: Kinematic variables derived from the reconstruction code used in this analysis.
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2.2 Quasi-elastic Scattering Consistency, Discussed in the Lab Frame

The elastic kinematics associated with CCQE processes not only enables a ready computation of
the initial neutrino energy, but it provides several methods by which this can be done. Crucially,
this will require the knowledge that the neutrino momentum was aligned with the z-axis. Consider
the following:

(Pν − Pp)2 = (P` − Pn)2 (1)

Eν = Ep + E` −mn (2)

~pν = ~pp + ~p` (3)

Where 1 is one of the Mandelstam variables - a Lorentz invariant - and 2 and 3 enforce energy
and momentum conservation. From 1

(p` − pn)2 = (pν − pp)2

E2
` − |~p`|2 + E2

n − 2E`En = E2
ν − |~pν |2 + E2

p − 2EνEp + 2~pν · ~pp − |~pp|2

m2
` +m2

n − 2E`mn = m2
p − 2EνEp + 2~pν · ~pp

m2
` +m2

n − 2E`mn = m2
p − 2EνEp + 2Eν |~pp|cosθp

Eν =
E`mn + 1

2
(m2

p −m2
n −m2

`)

Ep − |~pp|cosθp

Using the fact that the neutrino momentum was aligned with the z-axis, and that |~pν | ≈ Eν ,
Eq.3 becomes Eν = |~pp|cosθp + |~p`|cosθ`. Subtracting this from Eq.2 yields Ep − |~pp|cosθp =
mn + |~p`|cosθ` − E`. Substituting this into the denominator above yields an equation solely in
terms of the reconstructed lepton. Furthermore, the above procedure would proceed equally well
in terms of either final state particle p↔ `. This yields two equations, either of which can be used
to obtain the initial neutrino energy in terms of the 4-momentum of the proton or lepton. We will
call these EQE−p

ν and EQE−`
ν hereafter.

EQE−`
ν =

E`mn + 1
2
(m2

p −m2
n −m2

`)

mn + |~p`|cosθ` − E`
(4)

EQE−p
ν =

Epmn + 1
2
(m2

` −m2
n −m2

p)

mn + |~pp|cosθp − Ep
(5)

And in fact we have already seen a third equation, 2, which requires no directional information
but requires that we have reconstructed both the lepton and proton. Hereafter we will refer to
this as Erange

ν .

Erange
ν = Ep + E` −mn (6)

Because these three formulae in principle reconstruct the same quantity, it will prove useful
to consider the following quantity which captures their level of mutual agreement. The smaller
the value of this parameter, the better the agreement between the quasi-elastic energies. We will
hereafter refer to this as the quasi-elastic scattering consistency.
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∆QE =

√(
EQE−p
ν − EQE−`

ν

)2
+
(
EQE−p
ν − Erange

ν

)2
+
(
EQE−`
ν − Erange

ν

)2
(7)

In principle, these three formulae are exactly equivalent for the quasi-elastic scattering of a
neutrino off of a free neutron. In other words, the idealized quasi-elastic scattering consistency is
0. However, we must account for the fact that the neutron exists within a nuclear environment.
This introduces several complications.

Firstly, the neutron is not free. A certain amount of energy must be expended to remove it
from the nucleus. In reality this is not a fixed value within a given nucleus. However the differences
are small, O(10 MeV). So at the energy scales of interest to this analysis we approximate it as a
fixed value capturing the mean removal energy. A value of Eb = 28.5 MeV is used. This acts as a
reduction to the neutron’s effective scattering mass mn → mn − Eb in Eqs. 4-6.

Secondly, we have assumed that the momenta of the outgoing lepton and proton which are
measured exactly reflect those which emerged from the scatter. Because of the potential for final
state interactions within the nucleus this will not always be true. We do not introduce a correction
to account for this. Rather we will proceed under the assumption that these final state interactions
are small. There will be a population of interactions for which this is false. Our equations will
accordingly show tension with each other in situations such as this. The decision to neglect final
state interactions is thus a tacit shift in the sought after signal to be quasi-elastic interactions
which have small final state interactions.

Finally, we deduced these equations under the assumption that the struck nucleon was at rest.
Because of Fermi motion this is also not necessarily true. An approach to help minimize this is
discussed in the following section.

2.3 Model Independent Boosting to Reduce Nucleon Motion Effects

Variables associated with quasielastic scattering are generally derived in a picture in which a
neutrino scatters off of a bound nucleon at rest. Using these formulae with values reconstructed
in the lab frame works to a first approximation, but doing so neglects the initial Fermi motion of
the nucleon which was struck and thus introduces tacit approximations. If these formulae could
be properly computed in the rest frame of the nucleon then their power and accuracy can be
increased.

The Fermi motion is random, and a priori cannot be known. However, our signal of interest
comprises only quasielastic interactions. If final state interactions are small, we then have sufficient
reconstructible information to estimate the Fermi momentum if the momenta of all final state
particles are reconstructed and so long as the initial direction of the neutrino beam is known.
This follows from a consideration of the kinematics of the scattering.

~pν + ~pfermi = ~pfinal

~pν + ~pfermi =
∑

particles

~p

1 lepton + 1 proton final state

〈0, 0, pν〉+ 〈pxf , p
y
f , p

z
f〉 = 〈pxp , pyp, pzp〉+ 〈px` , p

y
` , p

z
`〉

→ ~pf = 〈pxp + px` , p
y
p + py` , p

z
p + pz` − pν〉

→ ~pf ≈ 〈pxp + px` , p
y
p + py` , p

z
p + pz` − Eν〉

(8)
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This allows us to estimate all three components of the Fermi momentum using reconstructible
quantities. This, combined with the energy of the struck nucleon En, can then be used to define
the boost vector ~β. The value of En in this case is the off shell mass given by Eq. 9 in which mn is
the on shell nucleon mass, Eb is the removal energy, and Tf is the final state nuclear recoil kinetic
energy.

En = mn − Eb − Tf
Tf << (mn − Eb)

≈ mn − Eb
(9)

The boost vector β is then given by Eq. 10

~β =
~pf
EN

(10)

It then becomes possible to boost all reconstructed 4-momenta into the struck nucleon rest frame.
These boosted vectors can then be used to compute derived kinematic quantities which will be
more powerful in this frame.

E ′

p′x
p′y
p′z

 =


γ −γβx −γβy −γβz
−γβx 1 + γ−1

β2 β
2
x

γ−1
β2 βxβy

γ−1
β2 βxβz

−γβy γ−1
β2 βxβy 1 + γ−1

β2 β
2
y

γ−1
β2 βyβz

−γβz γ−1
β2 βxβz

γ−1
β2 βyβz 1 + γ−1

β2 β
2
z



E
px
py
pz

 (11)

For example, in the prior section we saw that for CCQE interactions we can compute the initial
neutrino energy in three distinct ways. However the formulae assumed we were in the nucleon rest
from. Performing this boost minimizes the detrimental impact of that assumption. As illustrated
in Figs. 1- 3, for a simulated CCQE sample boosting provides reconstructed energies which are
both in tighter agreement with each other and with the true value.
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Correlations Between Energy Reconstruction Equations With and Without Boosting

Figure 1: Using 1µ1p as an example, correlations between the three different equations used
to compute the reconstructed neutrino energy, Erange

ν , EQE−p
ν , & EQE−`

ν are shown. These are
computed using truth level kinematic values for a simulated sample of CCQE interactions with 1
proton and 1 muon in the final state. These are illustrated prior to (left) and after (right) boosting
into the frame in which the struck nucleon was at rest.
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Comparison of True and Reconstructed Energy Definition Equations With and
Without Boosting

Figure 2: Using 1µ1p as an example, the degree to which three neutrino energy reconstruction
equations, Erange

ν , EQE−p
ν , & EQE−`

ν , correspond with the true energy are shown. These are
computed using truth level kinematic values for a simulated sample of CCQE interactions with 1
proton and 1 muon in the final state. These are illustrated prior to (left) and after (right) boosting
into the frame in which the struck nucleon was at rest.
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Figure 3: Improvement produced in ∆QE by boosting for a simulated sample of CCQE interactions
with 1 proton and 1 muon in the final state.
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2.4 Ionization Asymmetry of the Particles

Along with the kinematic variables, in the 1e1p analysis a variable that describes the ionization
asymmetry of the particles is used in the BDT. For completeness, we explain this variable here.

In principle, the asymmetry of the ionization of the two particles in the event can be a useful
discriminator against backgrounds. At MicroBooNE energies, the muon track and the trunk of
the electron shower are expected to be minimum ionizing. If the electromagnetic particle in the
event is a converted photon rather than an electron, the resulting e+e− pair will produce twice
the ionization in the portion of the shower trunk near the vertex. Protons are heavily ionizing,
typically depositing more than twice that of minimum ionizing particles, with increasing rate of
deposit increasing with distance and ending in a Bragg peak. This information can be used to
evaluate an asymmetry variable that can discriminate between 1`1p events and backgrounds.

In practice, this analysis does not directly use the ionized charge per unit length, called
“dQ/dx”; to form the asymmetry, but instead uses an average pixel intensity per track. Av-
eraging is found to reduce sensitivity to variations in the deposited charge along the track due to
stochastic processes related to ionization, δ rays, and small-scale detector defects like dead and
noisy wires.

In this analysis, the event images provide information about the ionization density of the objects
we have reconstructed, as discussed in Ref. [5]. The ADC counts are first mapped to pixels in an
image for each wire plane, and this information on “pixel intensity” is then used for the 3D event
reconstruction. The 3D tracking produces a series of points along a track, as it performs the track
finding. The average intensity within ±2 pixels (±6 mm) of each projected track point is found.
Then, across the length of each reconstructed particle, the mean pixel intensity is calculate µPI

The magnitude of µPI provides a simple yet effective particle ID within an event. We have
limited ourselves to 1 lepton-1 proton events, so the proton is identified by choosing the track
with the largest µPI . Because this quantity can be sensitive to the detector response at any given
location, we make us of the asymmetry of µPI between the particles, divided by the sum:

η =

∣∣∣∣µpPI − µ`PIµpPI + µ`PI

∣∣∣∣ (12)

In the case of signal interactions, which are 1`1p, the minimum ionizing lepton will have an average
pixel intensity that is roughly half of the intensity of a proton. On the other hand, in the case of a
track that is misreconstructed to have a false vertex, the values of µPI for the two vertex particles
will be approximately equal.

2.5 Statistical Analysis Presented on Plots

The primary goal of this note is to benchmark the agreement between data and simulation. In
order to do this, we must address the problem of low data statistics and finite Monte Carlo
statistics. In this section, we briefly describe the method used to present the uncertainties and to
characterize the agreement between a predicted spectrum and observation.

In general, the plots will be presented in two frames. The top frame shows the data overlaid
on the Monte Carlo prediction. The bottom frame will present the ratio of data to Monte Carlo.
Several uncertainties will be shown. The uncertainty bars on data points in the top frame are 68%
Poisson confidence intervals. The ratio plots in the lower frame will contain shaded bands which
indicate the flux, cross-section, and detector systematics. The points on the ratio plot illustrate
the 68% credible interval for the data-to-prediction ratio with a flat prior. This credible interval
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accounts for the statistical uncertainty in both data and in the Monte Carlo used to produce the
prediction. In the case of empty bins, the upper bar illustrates the same 34% upper coverage as
other points, but because the lower bar extends fully to 0 these are technically 84% total coverage
intervals.

The computation of the χ2/NDF and associated P-values are decoupled from the uncertainties
shown graphically. The χ2 which is reported on all plots is a combined Neumann-Pearson (CNP)
χ2, which all MicroBooNE analyses will ultimately use in LEE sensitivity calculations. Where µi
and Mi are the number of predicted and observed events in a given bin, the χ2

CNP is is defined as:

χ2
CNP =

∑
i



(µi −Mi)
2

3
1/Mi+2/µi

Mi 6= 0

(µi −Mi)
2

µi
2

Mi = 0

3 Boosted Decision Trees Used in This Analysis

In this analysis, the BDT training samples make use of “well-reconstructed CCQE” simulated
events. This is defined as a simulated CCQE event where the reconstructed energy is reconstructed
within 20% of the true neutrino energy. By training on well-reconstructed CCQE events, the BDT
learns to reject MEC events and events with large final state interactions , leaving reconstructed
events with a reliable energy estimation.

The 1e1p analysis uses a single BDT, while the 1µ1p analysis uses two BDTs. The 1µ1p analysis
uses one BDT trained to select well-reconstructed CCQE neutrino events and reject cosmics (called
the “Cosmic BDT”), and another to select well-reconstructed CCQE events and reject other types
of neutrino events (called the “Neutrino BDT”). The BDTs are regularized to reduce the potential
for spurious results.

To reduce the effect of systematic uncertainties in the LEE analysis, the variables used in the
1µ1p BDTs and the 1e1p BDTs have a great deal of overlap. The input variables are listed in
Table 3.

4 Simulation and Systematic Uncertainties

The simulation used for this analysis uses a GENIE Tune for the cross sections described in Ref. [9].
This tune is based on the preliminary GENIE release G18 10a 02 11a and is based on fits to the
T2K “CC0pi” νµ data. The νe cross section assumes the same underlying cross section parameters;
hence it differs from the νµ cross section mainly due to lepton-mass threshold effects.

The data below were acquired over three running periods. Between Run 1 and Runs 2 and 3,
substantial improvements were made to the electronics. The TPC response for Run 1 is therefore
different from Runs 2 and 3, which are very similar. The detector experienced a degradation in
light collection during Run2, and this is simulated.

Systematic uncertainties are included in the analysis below. These fall into three categories:
Flux, Cross Section, and Detector Response. The methods for determining these uncertainties
are described in Ref. [10]. In the case of detector systematic uncertainties, the total variation was
found to be 7% and this is directly applied.
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Variable Used in 1µ1p BDTs Used in 1e1p BDTs
Opening Angle Yes Yes
|φp − φ`| Yes Yes
Charge within 5 cm of vertex Yes Yes
Neutrino Energy Yes Yes
αT Yes Yes
Event pT Yes Yes
Event pT/p Yes Yes
∆QE (QE Consistency) Yes Yes *
Q0 Yes Yes
Q3 Yes Yes
Proton φ Yes Yes
Proton θ Yes Yes
Lepton φ Yes Yes
Lepton length Yes Yes
φT Yes No
Bjorken’s x Yes No
Bjorken’s y Yes No
Proton length No Yes
Energy of electromagnetic shower No Yes
η No Yes
pz − Eν No Yes
θp + θe No Yes
proton shower fraction No Yes
Electron shower fraction No Yes
Shower charge in event image /
shower charge clustered as electron No Yes

Table 3: Variables used in the 1µ1p BDTs and the 1e1p BDT, with overlap noted. If a ∗ appears,
the variable is used in the boosted frame. Note that more variables are used for validation than are
used in the BDTs.

5 1µ1p Selection, With Data-to-MC Comparisons

Selection of 1µ1p events is done in two steps: (1) A set of preliminary cuts is applied to both
clean out events more likely to be misreconstructed and to ensure that this selection is entirely
independent from the 1e1p signal selection; and (2) A final cut is made on BDT scores.

5.1 Preliminary Cuts

These preliminary cuts serve to cut out events that are safely out of the realm of our desired
sideband signal. It is further intended to limit the set of candidate events to those for which all
variables the BDT requires are well defined. Specifically, these cuts are:

1. Optical Precuts: Require a signal of more than 20 photo-electrons to have been observed
within a ∼100 ns coincident window during the time frame coincident with the accelerator
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the beam spill. Such a flash is typically from a neutrino, but could be due to a cosmic Michel
decay. To veto this latter case, no > 20 photo-electron signal in the 2 µs prior to the beam
spill is permitted. Finally, no more than 60% of the total light in an event can be found
in any one PMT. These cuts retain more than 97% of the neutrino events (all types) while
rejecting more than 75% of neutrino-empty background events.

2. Vertex Requirements: Require a 2 pronged vertex reconstructed within the fiducial vol-
ume, defined as more than 10 cm from the edge of the active detector volume.

3. Containment Requirements: Require containment, i.e. that no particle can be tracked
within 5 cm of an edge for the 1e1p and 1µ1p analyses.

4. Electron Shower Cut Using the MPID neural network score, an event which has a 20%
or greater probability of having an electron shower present is rejected.

5. Basic Quality Cuts: Require opening angle greater than 0.5 radians and that the recon-
structed momenta yield a physical β < 1 value so that boosting is defined (described in
Sec. 2.3). If an event contains multiple vertices, select the vertex with the highest cosmic
BDT score within that event.

5.2 Boosted Decision Tree

A final selection is applied via a cut on two boosted decision tree (BDT) predictions, made using
the XGBoost Python library. BDT training requires careful definition of both the signal and any
background one wishes to discriminate against. To achieve a pure selection with high enough
stats to provide a meaningful future constraint on 1e1p systematic errors, two separate BDTs are
trained: one to weed out cosmic events and one to weed out other, non-CCQE events.

In response to individual variable studies, it was found that our reconstruction is particularly
sensitive to events for which we either fail to reconstruct the full energy or we mistake a non-1l1p
event for having only two prongs. To amend this, we can create a very specific signal definition
which will respond well to our reconstruction capabilities.

Three new qualifiers are introduced for Monte Carlo: 1L1P, On Vertex and Good Reco.
An MC event is 1L1P if it contains exactly one lepton with true kinetic energy greater than
35 MeV and exactly one proton with true kinetic energy greater than 60 MeV. An event is On
Vertex if its reconstructed neutrino vertex position is within 5cm of the true interaction vertex. An
event which has Good Reco has total neutrino energy reconstructed within 20% of true neutrino
energy. The signal definitions used to train the BDTs are therefore as follows:

• Signal: νµ CCQE — Our signal definition, for the purpose of training the BDT network is
νµ MC events which are 1L1P, On Vertex, have Good Reco and feature an interaction mode
corresponding to CCQE.

• Background One: Cosmic — Our cosmic background definition comprises off-beam
events from our ExtBNB sample, dirt events (interactions simulated outside the detector’s
active volume) as well as νµ MC events which are 1L1P but not On Vertex.

• Background Two: νµ non-CCQE — Our non-CCQE definition is νµ MC events that
either: a) are 1L1P, On Vertex and with Good Reco but have an interaction mode corre-
sponding to anything besides CCQE; b) Are 1L1P and On Vertex but not Good Reco, or c)
Are not 1L1P.
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These background definitions are motivated by the different capabilities of our reconstruction.
In Background 1 events, a vertex has been reconstructed somewhere far from the true neutrino
vertex, regardless of what kind of interaction that neutrino underwent. In Background 2 events,
a vertex has been successfully placed on the true neutrino vertex, but either the interaction is not
our desired νmu CCQE signal or the energy was not reconstructed properly.

A score is then assigned to each event, with a number closer to one implying a more background-
like event and one closer to zero implying more signal-like.

A cut is chosen to eliminate events with a Cosmic Background BDT probability of more than
0.5 and a νµ non-CCQE Background BDT probability of more than 0.5, as illustrated in Fig 4.

5.3 Selected Data-MC Comparisons

At this point, the full analysis has only been run over a small subset of recorded data corresponding
to approximately 5e19 protons on target. A plot of reconstructed neutrino energy after the full
suite of selection cuts have been made can be seen in Fig 5.

The result of these cuts is a selection with almost 70% well-reconstructed νµ CCQE purity and
which is estimated to identify over 4k νµ events when run over the full data set. Plots for a large
handful of different variables after the full selection can be found in Appendix A.

6 1e1p Selection, With Limited Data-to-MC Comparisons

Just like in the 1µ1p sideband, identification of of 1e1p signal events is done in two steps: (1) A
set of preliminary cuts is applied (2) A cut on a BDT score.

6.1 Preliminary Cuts

The preliminary cuts will identify and remove populations of backgrounds that are very distinctly
not signal and despite having different requirements, serve much the same purpose as those for
the 1µ1p selection. Specifically, these cuts are:

1. Optical Precuts: Require a signal of more than 20 photo-electrons to have been observed
within a ∼100 ns coincident window during the time frame coincident with the accelerator
the beam spill. Such a flash is typically from a neutrino, but could be due to a cosmic Michel
decay. To veto this latter case, no > 20 photo-electron signal in the 2 µs prior to the beam
spill is permitted. Finally, no more than 60% of the total light in an event can be found
in any one PMT. These cuts retain more than 97% of the neutrino events (all types) while
rejecting more than 75% of neutrino-empty background events.

2. Vertex Requirements: Require a 2 pronged vertex reconstructed within the fiducial vol-
ume, defined as more than 10 cm from the edge of the active volume, and omitting a region
in z between 700-740 cm corresponding to dead collection plane wires.

3. Containment Requirements: Require containment, i.e. that no particle can be tracked
within 5 cm of an edge for the 1e1p and 1µ1p analyses. The 1e1p adds an additional
requirement that prevents the shower from being tracked into a region of poor efficiency,
defined by y = z√

3
− 117 and y = z√

3
− 80 cm.
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Figure 4: Spectra of each BDT score in all Run 1 1µ1p samples. Note the log scale for readability,
and that the ratio of data to Monte Carlo is presented with a suppressed zero. Although the point
in the lowest bin is low, overall the data are in good agreement with the simulation, as indicated
by the goodness of fit and also as seen in the plots in Appendix A.

4. Particle Energy Cuts: Require the reconstructed deposited lepton energy to be above 35
MeV and proton energy above 60 MeV. These values correspond to somewhat conservative
lower bounds on how large a feature need be to regularly reconstruct well.

5. Analysis Orthogonality Cut: Require the particle which has the most shower like char-
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Figure 5: Comparison of Reconstructed νµ Energy for 1µ1p events between Run 1 Open Data (5e19 POT) and

Montecarlo after full selection.

acter to comprise at minimum 20% shower like pixels. The shower fraction for each track is
the fraction of of pixels which is identified as shower-like by SparseSSNet. The 1µ1p selec-
tion demands this value to be lower than 20%. This leads to a natural orthogonality in the
selected samples.

6. Muon Presence Cut Using the MPID neural network score, an event which has a 20% or
greater probability of having a muon present is rejected.

7. π0 Rejection If the second shower finding algorithm yields a second shower which permits
the reconstruction of a π0 invariant mass, and this mass is > 50 MeV then the event is
rejected.

8. Basic Quality Cuts: Require opening angle greater than 0.5 radians and that the recon-
structed momenta yield a physical β < 1 value so that boosting is defined (described in
Sec. 2.3). If an event contains multiple vertices, select the vertex with the highest BDT
score within that event.
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6.2 Boosted Decision Trees

The BDT is implemented using the XGBoost framework. Training is accomplished using three
samples:

1. Data taken at a time external to the event readout window time, this provides a cosmic
background sample.

2. Monte Carlo νµ with data overlay: Provides νµ sample with data driven cosmic background.

3. Monte Carlo νe intrinsic: Provides signal sample

The specific variables used during the training are specified in Table 3. Training is performed as
conservatively as possible with 40% of the available simulation while 60% is reserved for validation.
After reconstruction and initial selection cuts, this provides O(103) signal training events and
O(104) νµ and cosmic background examples. The result of this training is a single score assigned to
any given vertex. This score ranges from 0 to 1 and can be loosely interpreted as a probability that
a given event is 1e1p signal like. The final selection requires that the BDT signal probability score
is > 0.9. This cut is preliminary and was chosen based on a preliminary sensitivity optimization
accounting only for νe statistics. The ultimate value used will be chosen by optimization accounting
for systematic uncertainties and the νµ constraint.

As one validation, we perform a comparison between a POT normalized predicted probability
spectrum and an open data set corresponding to 4.4 × 1019 POT. This is illustrated in Fig. 6. It
is also useful to verify that at any particular BDT cut chosen that the number of selected events
anticipated matches the number we observe. This is also characterized using the same open data
set and is illustrated in Fig. 7

For all plots shown in this note, the BDTs were trained on Run 1 simulation. Electronics
improvements were implemented between Run 1 and the later runs, which substantially reduced
noise. This may lead to the choice of employing BDTs tuned for separate runs in the future.
However, as shown below, the goodness of fit measurements for the analysis using only the Run-
1-trained BDT is acceptable on all plots. Thus, problematic effects of using a BDT trained only
on Run 1 for the subsequent runs are modest.
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Figure 6: Left, Top: Comparison between a stacked predicted BDT score for the 1e1p selection normalized to 4.4

× 1019 POT and an open data set; Bottom: Ratio of data to prediction. Note that the first bin extends off the

top of the upper plot, but is demonstrated to be in good agreement by the ratio shown on the lower plot. Right,

shape normalized comparisons of a low energy signal shape as a function of BDT score compared with various

backgrounds.

Figure 7: Comparison between the number of 1e1p events selected in data and prediction if the BDT cut is placed

at >x. Moving further to the left indicates a cut at a lower BDT score value and permits more events into the

selection. We compare the observed value with 90% confidence bands on the prediction. This allows us to see that

the agreement between simulation and data is not an artifact of any particular cut value, but rather would persist

for any chosen BDT score value.
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6.3 Selected Data-MC Comparisons

While this analysis has not yet been performed over a large quantity of unblinded data, we nonethe-
less have performed validations using several useful data sets, described in Table 1. We highlight
selected plots here. All are available in Appendix B. The specific sample that was used for a given
plot will be specified.

The unbiased 5.3 × 1019 POT is a relatively small data set, but is completely unrestricted
and thus allows any validation, albeit with limited statistics. For example, Fig. 8, a plot of the
neutrino energy for the 1e1p selection, is derived from this data set with the full selection applied.
A larger set of data to Monte Carlo comparisons for the unbiased 5.3 × 1019 POT is provided in
Appendix B.1

Figure 8: Stacked comparisons between 1e1p prediction and data for reconstructed neutrino energy using the

open 5.3 × 1019 POT data.

Because the LEE signal is primarily at Eν < 400 MeV, we can also verify our energy recon-
struction & selection with higher statistics while remaining blind, using the High Energy box, but
only at energies >700 MeV. The neutrino energy for 1e1p events from this sideband is presented
in Fig. 9. This and other plots we have studied show excellent agreement with expectation in the
higher energy regime.
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Figure 9: Combined runs 1+2+3 prediction for the high energy sideband with full 1e1p selection
applied compared to observed selected data events in this sideband.

The blindness-safe histogram set opens histograms but not raw reconstructed data for about
half of the total data set. By opening histograms, we can gain information without exploiting
correlations between the variables. The variables are chosen such that shape information in any
given histogram would give less than 0.1σ sensitivity to the LEE signal. All of the 1e1p selection
cuts described above are applied. In order to remain blind to normalization, the total number of
events was set to the predicted total minus 1.6σ (90% CL). This allows relatively high statistics:
38 events.

The Blindness-safe histograms provide invaluable comparisons between predicted and observed
shapes with much higher statistics than available with open data, all of which show excellent
agreement. Fig. 10 and 11 provide two examples of the excellent agreement observed: the 2-Body
QE consistency and Bjorken’s scaling x (which are both evaluated in the boosted reference frame.
The boost provides better separation between the CCQE candidates, and the misreconstructed
backgrounds. Both plots show good agreement with data and illustrate that our selected data
events exhibit CCQE-like behavior. The good agreement on Bjorken’s x is also notable because
this is not a variable used in the BDT. Also interesting is pz − Eν (Fig. 12), the goodness of
agreement between the final state longitudinal momentum and the reconstructed neutrino energy.
For a mass-less neutrino and a 1e1p final state, this quantity should be zero. This provides
a powerful kinematic check against backgrounds and is thus a strong BDT variable. Another
interesting variable is αT (Fig. 13, the transverse momentum relative to the lepton axis. The
shape of this distribution can reveal the magnitude of final state interaction in the selected sample.
The relative flatness of the distribution suggests that only small FSI events are being selected as
anticipated. Appendix B.2 provides further examples.
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Figure 10: Blindness-safe plot from Run 1 + 2 + 3 : Consistency between 3 QE reconstruction formulae.

Evaluated in the boosted, nucleon at rest reference frame

Figure 11: Blindness-safe plot from Run 1 + 2 + 3 : Bjorken X. Evaluated in the boosted, nucleon at rest

reference frame.
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Figure 12: Blindness-safe plot from Run 1 + 2 + 3 : pz − Eν

Figure 13: Blindness-safe plot from Run 1 + 2 + 3 : αT
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7 Conclusions

Using the unique reconstruction strengths afforded by the MicroBooNE LArTPC, we have de-
veloped an end do end reconstruction and event selection capable of identifying CCQE νµ νe
interactions with high purity. This is possible because of the very complete kinematic topological
information reconstructible in MicroBooNE as well as due to the application of powerful ma-
chine learning techniques. These reconstructions and selections will be pivotal in MicroBooNE’s
ultimate checks on the MiniBooNE low energy excess.

Appendices:

A Further 1µ1p Data-to-Monte Carlos Comparisons

These plots are derived from Run 1 open data corresponding to 4.4 × 1019 POT. Systematic
errors comprise those from neutrino simulation flux and cross section, as well as major detector
systematic effects. This represents the complete collection of plots used to check agreement, and
includes some plots also in the main text, above.

Figure 14: 1µ1p plots of αT and φT

Figure 15: 1µ1p plots of xBj and yBj
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Figure 16: 1µ1p plots of charge near the vertex and quasi-elastic consistency

Figure 17: 1µ1p plots of muon and proton φ

Figure 18: 1µ1p plots of lepton and proton
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Figure 19: 1µ1p plots of lepton and proton track length

Figure 20: 1µ1p plots of lepton and proton energies

Figure 21: 1µ1p plots of neutrino energy and Q2
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Figure 22: 1µ1p plots of the energy and momentum magnitude components of the exchange boson
vector

Figure 23: 1µ1p plots of pT and the ratio of pT to total momentum magnitude, p

Figure 24: 1µ1p plots of θp + θµ and |φp − φµ|
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Figure 25: 1µ1p plot of opening angle of between muon and proton
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B Further 1e1p Data-to-Monte Carlos Comparisons

B.1 Run 1+3 Open Data Set

These 1e1p histograms are derived from the open data sets from Run 1 + Run 3. This corresponds
to a total POT of 5.3E19 from each run. This represents the complete collection of plots used to
check agreement, and includes some plots also in the main text, above.

Figure 26: Stacked comparisons between 1e1p prediction and data for αT .
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Figure 27: Stacked comparisons between 1e1pprediction and data for Bjorken X.

Figure 28: Stacked comparisons between 1e1p prediction and data for Bjorken Y.
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Figure 29: Stacked comparisons between 1e1p prediction and data for Charge Near Vertex.

Figure 30: Stacked comparisons between 1e1p prediction and data for Electron φ.
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Figure 31: Stacked comparisons between 1e1p prediction and data for Electron θ.

Figure 32: Stacked comparisons between 1e1p prediction and data for Proton φ.
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Figure 33: Stacked comparisons between 1e1p prediction and data for Proton θ.

Figure 34: Stacked comparisons between 1e1p prediction and data for electron SSNet shower fraction.
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Figure 35: Stacked comparisons between 1e1p prediction and data for proton SSNet shower fraction.

Figure 36: Stacked comparisons between 1e1p prediction and data for η.
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Figure 37: Stacked comparisons between 1e1p prediction and data for opening angle.

Figure 38: Stacked comparisons between 1e1p prediction and data for θp + θe.
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Figure 39: Stacked comparisons between 1e1p prediction and data for |φp − φe.

Figure 40: Stacked comparisons between 1e1p prediction and data for pT .
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Figure 41: Stacked comparisons between 1e1p prediction and data for pT /p.

Figure 42: Stacked comparisons between prediction and data for pz − Eν .
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Figure 43: Stacked comparisons between 1e1p prediction and data for Q0.

Figure 44: Stacked comparisons between 1e1p prediction and data for Q3.
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Figure 45: Stacked comparisons between prediction and data for 2-body elastic scattering consistency.

Figure 46: Stacked comparisons between 1e1p prediction and data for 2-body elastic scattering consistency.
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Figure 47: Stacked comparisons between 1e1p prediction and data for total ADC charge near the vertex.

Figure 48: Stacked comparisons between 1e1p prediction and data for reconstructed neutrino energy.
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Figure 49: Stacked comparisons between 1e1p prediction and data for reconstructed proton energy.

Figure 50: Stacked comparisons between 1e1p prediction and data for reconstructed electron energy.
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Figure 51: Stacked comparisons between 1e1p prediction and data for reconstructed vertex X position.

Figure 52: Stacked comparisons between 1e1p prediction and data for reconstructed vertex Y position.
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Figure 53: Stacked comparisons between 1e1p prediction and data for reconstructed vertex Z position.

B.2 Run 1+2+3 Blindness-Safe Plots

These plots reflect comparisons for different variables between a stacked MC predicted spectrum
and the observed spectrum from 38 selected events drawn from runs 1,2, & 3. The stacked
prediction is normalized such that the number of events matches the number of data events. In
certain situations there will be fewer than 38 events in a given histogram. This occurs when the
value is outside of the blind histogram range. This may occur either because the variable has a
long tail, or because the variable is not defined in all situations. This represents the complete
collection of histograms used to check agreement, and includes some plots that are also in the
main text, above. The illustrated bands correspond to flux, cross section, and detector systematic
uncertainties. Bins which contain no simulated prediction may be illustrated, but are omitted
from the χ2 computation.
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Figure 54: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : αT .

Figure 55: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Bjorken X
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Figure 56: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Bjorken Y

Figure 57: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Electron φ
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Figure 58: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Electron Shower Fraction

Figure 59: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : 3D Opening Angle
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Figure 60: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Absolute difference in φ, —φp − φe—

Figure 61: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Proton deposited energy
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Figure 62: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Proton φ

Figure 63: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Proton Shower Fraction
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Figure 64: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Proton θ

Figure 65: Blindness-safe plot (1e1p) from Run 1 + Run 3 : Final state transverse momentum of the event
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Figure 66: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Final state transverse momentum of the event divided

by total momentum

Figure 67: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : pz − Eν
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Figure 68: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Q0

Figure 69: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Q3
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Figure 70: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Shower charge in image divided by shower charge in

electron cluster

Figure 71: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : θp + θe
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Figure 72: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Consistency between 3 QE reconstruction formulae

Figure 73: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Charge near vertex

54



Figure 74: Blindness-safe plot from Run 1 + 2 + 3 : Vertex X

Figure 75: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Vertex Y
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Figure 76: Blindness-safe plot (1e1p) from Run 1 + 2 + 3 : Vertex Z

References

[1] M. Martini and M. Ericson, Quasielastic and multinucleon excitations in antineutrino-nucleus
interactions Phys. Rev. C 87, 065501

[2] MicroBooNE Collaboration, Design and construction of the MicroBooNE detector, JINST,
12,02, P02017–P02017, 2017

[3] MicroBooNE Collaboration, “Neutrino Event Selection in the MicroBooNE Liquid Argon
Time Projection Chamber using Wire-Cell 3-D Imaging, Clustering and Charge-Light Match-
ing,” https://microboone-docdb.fnal.gov/cgi-bin/private/ShowDocument?docid=28632

[4] C. Adams et al., A Deep Neural Network for Pixel-Level Electromagnetic Particle Identifica-
tion in the MicroBooNE Liquid Argon Time Projection Chamber, arXiv:1808.07269

[5] P. Abratenko et al., MicroBooNE Collaboration, Vertex-Finding and Reconstruction of Con-
tained Two-track Neutrino Events in the MicroBooNE Detector,arXiv:2002.09375, https:

//arxiv.org/abs/2002.09375

[6] MicroBooNE Collaboration, Semantic Segmentation with Sparse Convolutional Neural Net-
work for Event Reconstruction in MicroBooNE, MICROBOONE-NOTE-1091-PUB

[7] MicroBooNE Collaboration, MicroBooNE low-energy excess signal prediction from un-
folding MiniBooNE Monte-Carlo and data, MICROBOONE-NOTE-1043-PUB, https://

microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1043-PUB.pdf

56

https://arxiv.org/abs/2002.09375
https://arxiv.org/abs/2002.09375
https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1043-PUB.pdf
https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1043-PUB.pdf


[8] A. A. Aguilar-Arevalo et al., MiniBooNE Collaboration, Unexplained Excess of Electronlike
Events from a 1-GeV Neutrino Beam, Phys. Rev. Lett. 102, 101802

[9] MicroBooNE Collaboration, Neutrino Interaction Model and Uncertainties for MicroBooNE
Analyses, MICROBOONE-NOTE-1074-PUB.

[10] MicroBooNE Collaboration, Novel Approach for Evaluating Detector Systematics in the Mi-
croBooNE LArTPC, MICROBOONE-NOTE-1075-PUB.

57


	Introduction
	Variables Used to Identify CCQE Interactions
	Kinematic Variables in the Lab Frame
	Quasi-elastic Scattering Consistency, Discussed in the Lab Frame
	Model Independent Boosting to Reduce Nucleon Motion Effects 
	Ionization Asymmetry of the Particles
	Statistical Analysis Presented on Plots

	Boosted Decision Trees Used in This Analysis
	Simulation and Systematic Uncertainties
	11p Selection, With Data-to-MC Comparisons
	Preliminary Cuts
	Boosted Decision Tree
	Selected Data-MC Comparisons

	1e1p Selection, With Limited Data-to-MC Comparisons
	Preliminary Cuts
	Boosted Decision Trees
	Selected Data-MC Comparisons

	Conclusions
	Further 11p Data-to-Monte Carlos Comparisons 
	Further 1e 1p Data-to-Monte Carlos Comparisons 
	Run 1+3 Open Data Set 
	Run 1+2+3 Blindness-Safe Plots 


