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Abstract

The strange quark contribution to the spin of the proton can be determined from neutral-current
elastic neutrino-proton scattering. At zero four-momentum transfer the axial form factor in this process
becomes a linear combination of the net spin contributions from the individual quark flavors to the
spin of the proton. MicroBooNE’s ability to detect low-energy protons allows it to detect these events
with negative four-momentum transfer squared as low as Q2 ' 0.1 GeV2/c2. We present a selection of
neutral-current elastic events in a subset of MicroBooNE neutrino data and outline a plan to extract the
strange part of the axial form factor from this selection in the full data set.

1 Introduction

The structure of a nucleon is more interesting than the three familiar up and down valence quarks. These
three quarks only account for a small percent of the nucleon mass. The gluons that bind the quarks split
into quark-antiquark pairs of up, down, and strange flavor. The remainder of the nucleon mass is carried by
this quark-gluon sea. The structure of the sea and how its elements combine with the valence quarks to give
the nucleon its measured structure are not precisely known.

The net spin of the proton comes from a combination of the spin and orbital momentum of the quarks
and gluons. The net contribution from the spin of strange quarks and antiquarks, ∆s, is defined as

∆s =

∫ 1

0

∆s(x) dx

∆s(x) =
∑
r=±1

r[s(r)(x) + s̄(r)(x)] ,

where s(s̄) is the spin-dependent parton distribution function of the strange (anti)quark, r is the helicity of
the quark relative to the proton helicity and x is the Bjorken scaling variable [1]. In the static quark model
this value is zero.

In the 1980s the European Muon Collaboration [2] and several subsequent experiments found that the
Ellis-Jaffe Sum Rule was violated in polarized, charged-lepton, inclusive, deep inelastic scattering (DIS). The
Ellis-Jaffe sum rule [3] assumes that SU(3) flavor symmetry is valid and that ∆s = 0. For the results to be
consistent with exact SU(3) flavor symmetry, ∆s must be negative. Follow-up measurements using charged-
lepton semi-inclusive deep inelastic scattering have been consistent with ∆s = 0, but these determinations
of ∆s are highly dependent on the fragmentation functions used [4].

An independent determination of ∆s can be made using neutral-current (NC) elastic neutrino-proton
scattering. The NC elastic cross section depends directly on ∆s and no assumptions about SU(3) flavor
symmetry or fragmentation functions are needed.
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1.1 Neutral Current Elastic Neutrino-Proton Scattering (νp→ νp)

To see how the dependence on ∆s arises, it is illustrative to look at the simplest case of free nucleon scattering.
In reality, the neutrinos are interacting with nucleons in an argon nucleus which can modify the scattering
cross section and the observed final state. The neutral-current elastic (NCE) neutrino-proton cross section
for free nucleon scattering is given by [1],(

dσ

dQ2

)NC
ν

=
G2
F

2π

[
1

2
y2(GNCM )2 +

(
1− y − M

2E
y

)
(GNCE )2 + E

2M y(GNCM )2

1 + E
2M y

+

(
1

2
y2 + 1− y +
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2E
y

)
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(
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2
y

)
GNCM GNCA

]
,

where GNCA is the neutral-current axial form factor, GNCE is the neutral-current electromagnetic form factor,
and GNCM is the neutral-current magnetic form factor. These form factors represent the finite structure of the
proton. The axial form factor represents the spin structure of the proton. Individual quark contributions to
GE and GM have been measured in electron-nucleon scattering, from which we can predict GNCM and GNCE .
The strange quark contribution to the electromagnetic form factors has been determined to be small. This
allows us to determine GNCA from NCE interactions.

To determine the net strange quark spin contribution we can write GNCA in terms of quark flavor and
extrapolate to Q2 = 0

GNCA (Q2) =
1

2
GCCA (Q2) +

1

2
GsA(Q2) ,

GNCA (Q2 = 0) =
1

2
(∆u−∆d)− 1

2
∆s ,

where (∆u − ∆d) = gA is the weak coupling constant which has been measured in neutron decay, and
GCCA is the charged-current axial form factor which contains information about the up and down quark spin
distributions.

While nuclear effects can modify the final state, the signal of a NCE proton interaction is ideally a single
proton track. Without a vertex to help identify the track as coming from a neutrino interaction, they are
difficult to reconstruct. Everything that we know about this interaction, including momentum transfer,
comes from the single proton track. Since we want to extrapolate GNCA (Q2) to zero, we need to be able to
reconstruct very low energy protons. We estimate that we will be able to detect a proton track if it traverses
at least 2.5 cm (∼ 8 wires) in MicroBooNE. This is the range of a 50 MeV kinetic energy proton in liquid
argon, which corresponds to a NC elastic interaction with Q2 ∼ 0.10 GeV2.

2 Model

The model of neutrino interactions in the MicroBooNE detector, including the expected neutrino flux, the
neutrino-nucleon cross section, the effect of the nucleon in an argon nucleus, and the detector response,
is simulated in the MicroBooNE software. The initial neutrino-argon interactions are simulated using the
GENIE neutrino generator [9], and the final state particles are propagated through the detector geometry
using Geant4 [11]. In the model, only the neutrino-nucleon cross section is affected by the strange axial form
factor. The GENIE neutrino generator treats the nuclear effects and final state interactions as multiplicative
factors which modify the neutrino-nucleon cross section. This allows us to determine how the simulation
would change due to a change in the neutrino-nucleon cross section by calculating the ratio of the new cross
section to the cross section used in the simulation. This method is referred to as reweighting.

Even though the “signal” that we are optimizing for is NC elastic neutrino-proton interactions in the
TPC, other interactions are affected by the strange axial form factor and the form of the elastic cross section
in general. The cross sections for background NC elastic neutrino-neutron interactions and any NC elastic
interactions that occur outside of the TPC are affected by the new strange form factor and need to be
calculated. Charged current background events aren’t affected by the strange axial form factor, but we
calculate new charged current quasi-elastic (CCQE) cross sections for these events so that the cross section
parameterization and form factor models match the neutral current models that we are using.
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2.1 Cross Section Model

For reweighting both the NC elastic and CCQE cross sections, we use the Llewellyn-Smith form:

dσ

dQ2
=

G2
F

2πE2
ν

[
A±BW + CW 2

]
(1)

where the +(−) is for (anti)neutrino scattering, GF is the Fermi coupling constant, Eν is the incoming

neutrino energy, W = 4Eν
Mp
− τ , τ = Q2

4M2
p

, and

A =
(m2

l +Q2)

4

[
GA(1 + τ)− (F 2

1 − τF 2
2 )(1− τ) + 4τF1F2

]
(2)

B = −Q
2

4
GA(F1 + F2) (3)

C =
Q2

64τ

[
G2
A + F 2

1 + τF 2
2

]
. (4)

Here ml is the outgoing lepton mass and GA, F1, and F2 are the axial, Dirac, and Pauli form factors,
respectively. The form factors are different for NC and CC elastic scattering, with

FNC1,2 =
1

2
FCC1,2 , (5)

GNCA =
1

2
GCCA +

1

2
GsA , (6)

where GsA is the strange quark contribution to the axial form factor.

2.2 Form Factor Model

For the form factor models, we use a z expansion parameterization for all three of the form factors described
in [5] and [6]. These parameterizations are made by mapping the negative four-momentum transfer squared,
Q2, onto a domain where the strange axial form factor is analytic. This gives a new variable

z(Q2, tcut, t0) =

√
tcut +Q2 −

√
tcut − t0√

tcut +Q2 +
√
tcut − t0

, (7)

where tcut is the first pole and t0 < tcut is an arbitrary number which can be optimized for the Q2 range of
the data. The new variable, z, is guaranteed to be small with the optimal choice of t0, so a Taylor expansion
around it should converge. The form factors are defined by the Taylor expansion as

G(Q2) =

kmax∑
k=0

akz(Q
2)k , (8)

where ak are the coefficients that are fit to data.
The fits that we use for the Dirac and Fermi form factors are in [5], and the fit for the charged-current

axial form factor is in [6].
We can use the same method to determine the strange part of the neutral-current axial form factor from

the number of NC elastic events in MicroBooNE. We use tcut = 4mπ, the four-pion threshold which is the
first pole in the axial form factor. If we set kmax = 2, this becomes a simple three parameter fit to the data

GsA(Q2) = as0 + as1 z(Q
2) + as2 z(Q

2)2 . (9)

We can redefine the strange axial mass, Ms
A, in terms of the slope of GsA(Q2) at Q2 = 0 as it is in the dipole

form

Ms
A ≡

√
2GsA(0)

(GsA)′(0)
=

√
2as0
as1

. (10)

Since we also know that GsA(Q2 = 0) ≡ ∆s, we can write the first two coefficients in terms of physical
parameters

as0 = ∆s, as1 =
2∆s

(Ms
A)2

. (11)
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2.3 Proton track identification

This section has been adapted from Ref. [7].

2.3.1 Gradient decision tree boosting

To identify proton tracks, we use a gradient-boosted decision tree classifier. We chose to use decision trees
because they are easily interpretable and the inputs can be a mix of numeric and categorical variables.
Below is a short description of gradient tree boosting. A more detailed description can be found in the
documentation for the XGBoost[8] software library that was used.

A decision tree can be thought of as a series of if/else statements that separate a data set into two or
more classes. The goal of each cut is to increase the information gain. For numerical variables any cut value
can be selected by the tree. At each node of the tree, a split is chosen to maximize information gain until a
set level of separation is reached. At the terminus of the series of splits, called a leaf, a class is assigned.

Two weaknesses of decision trees are their tendency to over fit the training data and the fact that the
output is a class label and not a probability. Gradient-boosting addresses both of these issues by combining
many weak classifiers into a strong one. Each weak classifier is built based on the error of the previous one.
For a given training set, whenever a sample is classified incorrectly by a tree, that sample is given a higher
importance when the next tree is being created. Mathematically, each tree is training on the gradient of
the loss function. After all of the trees have been created, each tree is given a weight based on its ability
to classify the training set, and the output of the gradient-boosted decision tree classifier is the probability
that a sample is in a given class.

2.3.2 The decision tree model

We created a multi-class gradient-boosted decision tree classifier, using the XGBoost software library, to
separate five different track types: any proton track, muons or pions from BNB neutrino interactions, tracks
from electromagnetic showers from BNB interactions, and any non-proton track produced by a cosmic ray
interaction. The classifier takes reconstructed track features as input and outputs a probability of the track
having been produced by each of the given particle types. The reconstructed features are based on the
track’s geometric, calorimetric, and optical properties from MicroBooNE TPC and PMT systems.

The training data that we use to make the decision trees comes from Monte Carlo simulation. The BNB
interactions are simulated using the GENIE neutrino generator, and cosmic interactions are simulated using
the CORSIKA cosmic ray generator [10]. The particles generated by GENIE and CORSIKA are passed to
Geant4 where they are propagated through a simulated MicroBooNE detector. For training and testing of
the trees we only use tracks that were reconstructed in LArSoft.

Figure 1 shows the decision tree proton score for all tracks that are contained in the MicroBooNE detector
for both a subset of the neutrino beam data corresponding to 5 × 1019 protons on target (POT) and the
Monte Carlo simulation.

If we keep only tracks that have a proton score greater than 0.5 (anything more likely than not to be a
proton) we have an overall proton identification efficiency of approximately 80%. This does not include the
reconstruction efficiency for protons.

Figure 2 shows the efficiency of protons from simulated neutral current elastic events with a proton score
greater than 0.5. Both the proton identification efficiency and the overall, reconstruction plus identification,
efficiency as a function of true proton kinetic energy are shown for NC elastic events. The average proton ID
efficiency over all energies is 75% for NC elastic proton interactions. When including the efficiency of track
reconstruction, the average overall proton efficiency for NC elastic events is 60%. The proton kinetic energy
range of interest for this analysis is from 0.05 to 0.5 GeV, which end at the very beginning of the drop in
proton efficiency. The average proton ID efficiency in the 0.05− 0.5 GeV kinetic energy range is 80% for NC
elastic protons and 64% when including the efficiency of track reconstruction.
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Figure 1: Data to Monte Carlo comparisons of proton ID scores. The left plot shows linear scale, and the
right plot shows the same thing in a log scale. The gray filled histograms are cosmic background tracks,
the color filled histograms show neutrino-induced Monte Carlo tracks, and the black points show tracks in
5× 1019 POT data. The dashed line shows the proton ID cut for the NC elastic pre-selection. Uncertainty
bars are statistical only.
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Figure 2: The proton efficiency in neutral current elastic interactions. The left plot shows the NC elastic
proton identification efficiency as a function of true proton kinetic energy. The proton identification efficiency
is defined as the fraction of reconstructed true proton tracks that are correctly identified as protons. The
right plots shows the overall NC elastic proton efficiency as a function of true proton kinetic energy. The
overall proton efficiency is defined at the fraction of simulated NC elastic protons that are reconstructed
and correctly identified at protons. The decrease in efficiency at larger proton kinetic energy is due to the
increased probability of the proton reinteracting in the argon. The uncertainty is statistical only.

3 Selection

We start the selection by making pre-cuts to remove a large amount of the background. The remaining
events are evaluated using a logistic regression model to determine how signal-like they are (described in
Sec. 3.2). The logistic regression output gives us a parameter to tune to maximize our ability to extract the
strange axial form factor parameters.

3.1 Pre-Selection

To reduce the cosmic background, we rejected any events that did not have a reconstructed flash with at
least 6.5 photoelectrons within the 1.6 µs beam timing window. We select reconstructed tracks that were
fully contained in the TPC fiducial volume and at least 2.5 cm long as potential proton candidates. The
track is selected if it is classified as a proton with a greater than 50% probability by the gradient-boosted
decision tree classifier described in 2.3.
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3.2 Logistic Regression of Selection Variables

Our NC elastic events of interest appear as a single isolated proton that produces scintillation light during
the beam-spill window. The reconstructed variables that we use to select these events are:

1. the decision tree proton ID score,

2. the distance from the track to the reconstructed flash in the z direction,

3. the distance from the track to the reconstructed flash in the y direction,

4. the distance between the track candidate and the next closest reconstructed track,

5. whether or not the track is in the beam direction,

6. the distance between any reconstructed tracks IDed as neutrino-induced muons and the reconstructed
beam flash,

7. the distance between any reconstructed tracks IDed as neutrino-induced pions and the reconstructed
beam flash.

The proton ID score is the same as used in the pre-selection and described in detail in Sec. 2.3. The muon
and pion background candidates are defined as any reconstructed track that has a muon ID or pion ID score
greater than 0.5 from the boosted decision tree classifier. We define the one-dimensional distances between
reconstructed tracks and reconstructed flashes as the difference in position between the midpoint of the track
(defined by its endpoints) and the photoelectron-weighted center of the flash.

To determine which events are NC elastic like based on these seven variables, we use them as input to a
logistic regression model [12]. In logistic regression we fit a multi-dimensional sigmoid function to the signal
and background data. The output is a score that can be used to determine how signal-like a data point is.

S(g(x)) =
eg(x)

1 + eg(x)
,

where g(x) is a linear combination of the selection variables, x,

g(x) = w0 + w1x1 + w2x2 + ...+ w7x7 .

Here x1 is the proton ID score, x2 is the distance to the flash, etc. The set of weights, w0, ..., w7 are determined
from a fit to the data. We determined these weights using the StatsModels module [13] in Python to fit the
model to a purely Monte Carlo data set.

If we choose a score cut of 0.8, for example, we get an overall signal efficiency of 19% and purity of 18%.
Figure 3 shows the signal selection efficiency as a function of true negative four-momentum transfer for a 0.8
score cut. The reconstructed four-momentum transfer is determined entirely from the proton kinetic energy
using

Q2
p = −q2 = −(p′p − pp)2

= −(E′p − Ep)2 + (p̄′p − p̄p)2

= 2TpMp,

where p is four-momentum, E is energy, p̄ is three-momentum, M is mass, T is kinetic energy determined by
the length of the track, the p subscript represents the proton in the neutrino-proton interaction, the prime
represents the final state, and the proton momentum in the nucleus is assumed to be small compared to
the final proton momentum. When the final proton momentum is close to the initial proton momentum in
low Q2 interactions, this assumption isn’t as strong and we rely more heavily on the nuclear model in the
GENIE simulation.

Figures 4, 5, and 6 show the signal and backgrounds selected compared to data for a 0.8 logistic regression
score cut. The number of simulated events and off-beam data events have been normalized to the 5×1019 POT
of on-beam data.
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Figure 3: Neutral current elastic se-
lection efficiency as a function of true
four-momentum transfer for a logistic
regression score cut of 0.8. The uncer-
tainties are statistical only.
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Figure 4: NC elastic event selection
given a logistic regression score cut of
0.8 as a function of reconstructed neg-
ative four-momentum transfer. The
top plot shows the signal and itemized
backgrounds compared to the BNB 5×
1019 POT data in black. The bottom
plot shows the ratio of BNB 5 × 1019

POT data to BNB MC with cosmic
overlay and off-beam data. In both
plots the uncertainties are statistical
only.

3.3 Remaining Backgrounds

The remaining backgrounds fall into four separate categories:

1. Neutral current background interactions in the TPC,

2. Charged current interactions in the TPC,

3. Neutrino interactions outside of the TPC,

4. Cosmic interactions in time with the beam.

The first category, NC backgrounds in the TPC, include NC elastic interactions with a neutron (35%),
NC elastic interactions with a correlated neutron-proton pair (35%), NC resonant interactions (25%), and
NC DIS interactions (4%). The last two, resonant and DIS, are mainly due to tracks being mis-reconstructed
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Figure 5: NC elastic event selection
given a logistic regression score cut of
0.8 as a function of reconstructed pro-
ton cos(θp), which is the proton angle
with respect to the neutrino beam di-
rection. The top plot shows the signal
and itemized backgrounds compared to
the BNB 5 × 1019 POT data in black.
The bottom plot shows the ratio of
BNB 5 × 1019 POT data to BNB MC
with cosmic overlay and off-beam data.
In both plots the uncertainties are sta-
tistical only.
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Figure 6: NC elastic event selection
given a logistic regression score cut of
0.8 as a function of reconstructed pro-
ton φ. The top plot shows the signal
and itemized backgrounds compared to
the BNB 5 × 1019 POT data in black.
The bottom plot shows the ratio of
BNB 5 × 1019 POT data to BNB MC
with cosmic overlay and off-beam data.
In both plots the uncertainties are sta-
tistical only.

or not reconstructed at all. The first two are due to the fact that neutrons are very difficult to detect in
LArTPCs. In the case of the NC elastic neutron interactions, we select events in which the neutron scatters
with a proton mimicking a NC elastic neutrino-proton event. In the case of NC interactions with correlated
neutron-proton pairs, we select the proton from the initial interaction, but the neutron goes undetected.

The second category, CC interactions in the TPC, are almost entirely from the muon track being mis-
reconstructed, mis-identified as a cosmic, or not reconstructed at all. In these events, a secondary proton
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from the interaction or a coincident cosmic proton can be selected as a neutrino-induced proton.
The third category, TPC-external interactions, occur when a neutrino from the beam interacts outside

of the active TPC volume. A neutron from this interaction can enter the TPC and elastically scatter with
a proton. The neutrino interaction occurs in the liquid argon inside of the cryostat ∼70% of the time,
and outside of the cryostat in the dirt upstream of the detector hall the other ∼30% of the time. These
cryostat-external, “dirt”, interactions are simulated separately from the interactions inside the cryostat. The
normalization of this dirt sample was determined by fitting the flash position in the beam direction to data.
There is an observed excess of flashes from dirt events in the upstream end of the detector. This region is
excluded in the analysis with fiducial cuts.

The last category, cosmics in time with the beam, is also the largest. However, we can determine the
rate and distribution of this background very well by taking data while the neutrino beam is not on. This
is the “off-beam” data set. These events can then be subtracted from the “on-beam” data.

4 Conclusions

The contribution of the strange quark spin to the spin of the proton is an open and interesting question.
A lot can be learned about this physics through the strange part of the axial form factor, including the
net strange spin contribution, ∆s, which is simply the value of the strange axial form factor, GsA, at zero
four-momentum transfer. MicroBooNE’s ability to detect low-energy protons translates into an ability to
measure GsA at low four-momentum transfer.

Selecting isolated proton-like reconstructed tracks near a beam flash gives us sets of events with an
enhanced fraction of NC elastic events. The efficiency and purity of this selection, as well as the agreement
between the selection in Monte Carlo and the selection in the BNB 5× 1019 POT data set can be tuned to
optimize the sensitivity to ∆s using the output of our logistic regression model.

Assuming the current level of neutral current elastic proton event selection efficiency, we expect to select
on the order of 1000 NC elastic events in the full MicroBooNE data set with a Q2 down to 0.1 GeV2.
The next stage of this analysis will include updated and improved energy calibration which is expected to
increase the agreement between data and simulation. A full treatment of the systematic uncertainty due to
the physics models, the proton selection, and the detector efficiency will also be included. This should allow
us to extract the strange axial form factor parameters with a greater precision than has previously been
possible in neutrino-nucleon scattering experiments.
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