
First Deep Learning based Event Reconstruction for Low-Energy Excess Searches
with MicroBooNE

MICROBOONE-NOTE-1042-PUB

The MicroBooNE Collaboration

This paper describes algorithms developed to isolate and accurately reconstruct two-track νµ-like
events that are contained within the MicroBooNE detector. This reconstruction has applications to
searches for neutrino oscillations and measurements of cross sections using events that are charged-
current quasi-elastic-like, among other applications. The algorithms we discuss will be applicable to
all detectors running in Fermilab’s SBN program, and any future LArTPC experiment with beam
energies ∼ 1 GeV.

I. INTRODUCTION

The MicroBooNE experiment, currently taking data in
the BNB neutrino beam at Fermilab since October 2015,
450 m downstream of the target, is a liquid argon time
projection chamber (LArTPC) [1]. The detector cryostat
has a total capacity of 170 tons of liquid argon, with an
active region of (2.6×2.3×10.4) m3. The system com-
prises two major sub-detectors: a time projection cham-
ber (TPC) for tracking, and a light collection system for
trigger and reconstruction of the precise interaction time.
The detector has been described in detail in Ref. [2].

Events which are contained within the detector, and
which are consistent with the signature of one muon and
one proton, are of interest to a number of physics studies
on MicroBooNE. These are primarily measurements of
exclusive cross sections, including charged-current quasi-
elastic (CCQE). This group of events is also important
for charged current π0 events (CCπ0) and the investiga-
tion of the MiniBooNE low energy excess [3] in Micro-
BooNE. While the signal for those events is hypothesized
to consist of an electron and at least one proton, the nor-
malization sample consists of a muon and at least one
proton. In this case, the reconstruction is identifying can-
didate events that may be selected as “1µ1p” (one muon
and one proton) events after particle ID. To obtain a
large sample of contained 1µ1p events, the MicroBooNE
collaboration has developed a specialized reconstruction
package specialized for contained two-track events. The
purpose of this reconstruction is to identify and recon-
struct those events with two tracks emanating from a
vertex that are both longer than a specified length; any
number of shorter tracks may be attached to the same
vertex.

The physics analyses that will make use of this code
package employ both the TPC and light collection sub-
systems. However the three-dimensional reconstruction
code described here uses only the TPC information, and
so we describe only this subsystem. In the TPC, electrons
from the ionization tracks produced by charged particles
in the interaction with liquid argon, due to a 273 V/cm
electron field, drift towards three sense wire planes that
provide the charge read-out The signals from the three

wire planes form three views, U (wires at +60 degrees
from vertical), V (-60 degrees) and Y (0 degrees). The
U and V planes detect signals via induction, while the
Y view is the collection plane. The wire spacing in each
plane is 0.3 cm. The wire waveforms are read out with
a sampling time of 0.5 µs, and with a shaping time of
the ASICs of 2 µs. This results in highly detailed event
information that we exploit by treating the time versus
wire hit plots from each of the three planes as images
with pixels, as described below. This use of high resolu-
tion images allows the analysis chain to make use of deep
learning algorithms. Indeed, in this note, we present an
algorithm-based reconstruction approach leveraging the
output of a pre-processing performed using a deep neural
network.

Our reconstruction package is discussed within the con-
text of MicroBooNE analyses. However, the approaches
are generic to LArTPC detectors that run in a ∼ 1 GeV
neutrino beam. Future examples of such experiments
are SBND and ICARUS, which will run in the same
BNB neutrino line as MicroBooNE in the near future [4].
The approach is also appropriate to reconstructing at-
mospheric neutrino events in the DUNE far detector [5],
although in this case, complications due to cosmic rays
will be substantially reduced compared to the surface-
based detectors on the BNB beam-line.

We will present results based on simulated events at
energies relevant to the MicroBooNE beam and using Mi-
croBooNE’s simulation package. MicroBooNE uses GE-
NIE [6] to simulate neutrino interactions and CORSIKA
[7] to simulate cosmic rays in events. The particles from
these simulations are fed to a GEANT4 simulation [8–10]
of the detector that has been tuned by comparison to a
cosmic ray data set.

II. DATA PRE-PROCESSING

An essential and very difficult problem to solve in re-
construction is identification and removal of cosmic rays
from the events. With no overburden and given the 2.3
millisecond readout window, MicroBooNE averages 12
cosmic rays per readout period. The high rate of cosmic

2

U V Y

p
e-

MicroBooNE Simulation
Preliminary

MicroBooNE Simulation
Preliminary

MicroBooNE Simulation
Preliminary

Wire

T
im

e

U V Y

p

µ-

MicroBooNE Simulation
Preliminary

MicroBooNE Simulation
Preliminary

MicroBooNE Simulation
Preliminary

Wire

T
im

e

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

FIG. 1. A simulated νµ event shown in the three wire planes that illustrates the features of interest for this reconstruction
package. The muon neutrino MC truth energy is 483 MeV. A single proton (deposited energy 266 MeV) and muon (deposited
energy 73 MeV) are produced. The image-like nature of the drift-time versus wire-plane plots is apparent, and explains why
we use this language. Each two-dimensional bin on these plots is called a “pixel” and, in this case, contains the information on
the ADC count. See text for explanation.

rays, in conjunction with un-responsive wires can cause
cosmic rays to look like neutrino events. To address this
issue, prior to three-dimensional reconstruction, an algo-
rithm is applied to tag pixels corresponding to cosmic
rays. This code will be described in a future separate pa-
per, and so is only briefly described here. Cosmic rays are
identified by the boundary-crossings at the edges of the
active region. Through-going cosmic rays will cross two
boundaries, while stopping cosmic rays will cross only
one boundary. Exiting muons from charged current neu-
trino events also cross one boundary, but this is not an
issue, since the analyses for which this code is used em-
ploy only contained events. The cosmic ray tagging al-
gorithm starts at the boundary and works inward, into
the detector, labeling the consecutive charge. Once all
charge that is connected to a boundary is identified, the
remaining untagged charge clusters on each planes are
included in a 3D-consistent volume called “contained re-
gions of interest” (cROIs). These cROIs are then fed
into the three-dimensional reconstruction code. Typi-
cally about 10 cROIs are found per event. Often tagged-
cosmic charge will also appear within a cROI.

The cROIs are then fed into a deep-learning algorithm
called Semantic Segmentation Network (SSNet) [12, 13].
The uses of Semantic Segmentation in the analysis, along
with tests of its efficiency, will be described in detail in
a coming article. Here, we will suffice to say that the
Semantic Segmentation identifies all pixels in the cROI
image as either background, track-like, or shower-like,
where background refers to empty pixels with little to no
charge deposition. Typically, the Semantic Segmentation
Network will classify muons, charged-pion and protons as
track-like, and electrons and photons as shower-like.

In summary, the inputs to the code we describe here
are cROIs that have all charge tagged as cosmic-ray,
track-like, shower-like or background-like. This informa-
tion is used to find a three-dimensional vertex using the
sets of images from the three planes. At that point a de-

termination is made as to whether there are two, and only
two, track-like chains of charge with lengths that pass
our requirement. The pixels associated with the track-
like chains are clustered. The three-dimensional vertex
is then fed to reconstruction of the three-dimensional
tracks. For the track-reconstruction stage, the pixel iden-
tification tagging is not used. We describe each of these
steps below, and present information on the reconstruc-
tion efficiency. However, first, we describe the input im-
ages that are utilized by this package.

III. USING IMAGES IN THE
RECONSTRUCTION PACKAGE

This reconstruction package makes use of MicroBooNE
data and Monte Carlo treated as “images.” By this,
we mean that the TPC data are represented on a 2-
dimensional plot, with wire number along the x axis
and drift time along the y axis. The choice to an-
alyze the detector in an image-format allows the use
of widespread and very powerful computer vision tools
such as “OpenCV” (Open source Computer Vision) [15],
which is a C/C++ based framework for computer vi-
sion that provides useful classes/functions for image pro-
cessing. It is a widely used application for cutting-edge
pattern recognition. Using images also allows for the im-
plementation of deep learning algorithms at two points
in the analysis. The first is the SSNet, which precedes
this reconstruction package, and was discussed above.
The second is a convolution-neural-network-based parti-
cle identification, which follows this reconstruction pack-
age, and is beyond the scope of this article. Ref. [16]
describes how deep-learning-based particle identification
can proceed, given the output of the three-dimensional
reconstruction package we describe here. We note that
likelihood-based particle identification that follows this
package is also under development on MicroBooNE.

3

However, the value of using images goes beyond the ap-
plications to deep learning. When constructing the sim-
ulated events, it is easy to overlay the pixels associated
with a simulated neutrino event onto a real out-of-beam
image or an image from the cosmic ray simulation. Also,
crucially for the three-dimensional reconstruction, infor-
mation can be straightforwardly associated with each
pixel at each stage of the algorithm, and then carried
through to the following stages.

The reconstruction package will primarily make use
of two kinds of images. The first is the “ADC-image,”
which contains information on the charge in each pixel.
The second is the “SSNet-image” which contains infor-
mation on whether pixels representing connected chains
of charge are track-like, shower-like or neither. In both
cases, the cosmic-ray tagged pixels are masked, and so
are not visible in the image. Two additional pieces of
information are also provided to the algorithm. The first
are images that show the cosmic-tagged pixels. The sec-
ond are images indicating dead wires.

A. ADC-images

In the case of the ADC-image, the intensity of each
“pixel” is determined by summing the amplitude of the
noise-filtered, deconvolved signal [17] from one or more
wires over one or more time ticks. The amount one sums,
either over time or in wires, must be defined when mak-
ing an image. We sum over six ticks and keep wires
individually. This choice comes from the fact that, at 0.5
microseconds per tick, six time ticks is 3 microseconds,
only slightly larger than the 2 microsecond shaping time
of the ASICs. Also, at the current drift field, the drift
velocity of the electrons is 0.11 ± 0.01 centimeters per
microsecond. Therefore, the drift distance spanned over
six time ticks is about 0.33 cm, which is similar to the de-
tector’s 0.3 cm wire pitch. The images are created using
the LArCV code available on GITHUB [18]. There is an
image for each cROI in each of the wire-plane views.

Figure 1 shows an example event of interest for this
reconstruction package. The ADC-Images are made in
each plane, as shown. The size of each image is set by
the cROI-finding algorithm. The top plot shows a νµ
CCQE simulated event. This event has true neutrino
energy of Etrue

ν = 483 MeV, the kinematic energies of the
emitted muon and proton are respectively 73 MeV and
266 MeV, which is typical of the kinematics that we aim
to reconstruct with this package.

B. SSNet-images

The SSNet-images, which are also constructed for each
cROI and for each wire plane view, are created by feeding
the ADC-images to a SSNet. The SSNet identifies the
pixels based on their surroundings into three categories:

• track pixels

10
 c

m

10 cm

MicroBooNE Simulation

Eν = 600 MeV
KEp = 279 MeV
KEe = 280 MeV

10 cm

10
 c

m

MicroBooNE
Simulation

Eν = 936 MeV
KEp = 397 MeV
KEµ = 395 MeV

Shower Pixel Label
Track Pixel Label

FIG. 2. Two examples illustrating the SSNet-image pixel
labeling. The left panel shows a 1e1p type event from a e
interaction. The pixels corresponding to the proton are here
here correctly classified as track by the SSNet. The pixels
corresponding to the electron are here mostly classified as
shower by the SSNet, except for a small portion mistakenly
labeled as track. The right panel shows a 1µ1p type event
from a νµ interaction. Here both the proton and muon tracks
are correctly labeled as track pixels. The muon decays into a
Michel electron, classified as shower pixels. Dark blue pixels
correspond to empty pixels, without charge deposition.

• shower pixels

• background pixels

Two examples of SSNet outputs are shown in Fig.
2. The left panel shows a view of 1e1p νe interaction
in the Y plane, of a 600 MeV neutrino producing a
279 MeV proton and a 280 MeV electron. The proton
track is correctly classified as containing only track-like
pixels (in yellow), and the electron shower is mostly
classified as shower pixels (in light blue). A small
fraction of the shower pixels are mistakenly labeled as
track-like. Background pixels, corresponding to pixels
without charge deposition are shown in dark blue. The
right panel shows a view in the Y plane of a 1µ1p νµ
interaction of a 936 MeV νµ producing a 397 MeV proton
and a 395 MeV muon, that decays into a Michel electron.
The Michel electron is here classified as shower pixels,
while the proton and muon tracks are correctly labeled
as track-like.

In this note, we will focus on the 1µ1p topology, there-
fore we will be looking for two-track vertices, neglecting
the track-shower interface vertices.

C. Cosmic-tagged-images

The reconstruction algorithms described in the rest of
this article are also supplied an additional image with
cosmic ray information. The through-going muon pixels

4

in this image are tagged, but visible. These pixels can
be optionally removed from the ADC, track, and shower
images to help reduce the probability that the reconstruc-
tion algorithms will reconstruct a cosmic background.

D. Dead-wire-images

In addition, the vertexing algorithm is supplied with an
image marking the spatial location of dead wires. The
list of dead wires is run-dependent. Providing this in-
formation allows the algorithm to know precisely which
region in the image represents pixels which contain no
charge, and make a decision about whether to veto this
region, and potentially neighboring regions, for vertex-
finding and particle clustering.

IV. 3D VERTEX FINDING AND PARTICLE
CLUSTERING

This reconstruction step finds the 3D vertex and then
clusters pixels belonging to individual particles. In this
algorithm, the pixels tagged as cosmic rays are removed
from the images. For each of the three views, a set of
three images are provided to this algorithm. The first
image contains all pixels in the cROI (ADC image), the
second contains pixels labeled as track (track image) after
the SSNet correction, and the third image contains pixels
labeled as shower (shower image). In many, but not all,
of the cases of interest to the two-track reconstruction,
the shower image will be entirely blank. For finding the
vertex, the algorithm focuses the track features in its own
image separately.

Along with use of LArOpenCV, described in the pre-
vious section, this code makes use of a custom OpenCV
package called Geo2D. This package has convenient tools
for 2D geometrical analysis to supplement and extend
OpenCV built in data types.

This step makes use of only the track-identified pix-
els (the track image) to reconstruct a 3D vertex. The
algorithm searches for a coincident “vee” shape feature
as shown in Figure 2, right, across the three wire planes
which could indicate the presence of a 1µ1p interaction.
The algorithm begins by identifying, per plane, a collec-
tion of vertex “seeds”. Vertex seeds are pixel locations
in the image where a likely vertex may be present, for
example at the location where two tracks meet at a kink
point. The algorithm identifies vertex seeds by break-
ing down continuous sets of track clusters into smaller
clusters which contain straight segments of charge.

First, a distinction between pixels in the low charge
(LC) and high charge (HC) regime as shown in Figure
3 is performed. The division between LC and HC ADC
count is a constant threshold per plane and is determined
from a study of the pixel intensities of MC protons. The
minimum HC value for the U, V, and Y planes are set
at 140 ADC, 120 ADC, and 80 ADC respectively. These

14vgenty

• Identify locations in image
where LC and HC exist

• Pixel intensity threshold is
applied per plane
• U — LC: 10 HC: 70
• V — LC: 10 HC: 60
• Y — LC: 10 HC: 40

HC

LC

Track Pixel Analysis

HC regime LC regime

• Analyze track pixels only
1. Find clusters in two charge

scales: Low Charge (LC) &
High Charge (HC)

DL Review Day 1

W

ir
e

14vgenty

• Identify locations in image
where LC and HC exist

• Pixel intensity threshold is
applied per plane
• U — LC: 10 HC: 70
• V — LC: 10 HC: 60
• Y — LC: 10 HC: 40

HC

LC

Track Pixel Analysis

HC regime LC regime

• Analyze track pixels only
1. Find clusters in two charge

scales: Low Charge (LC) &
High Charge (HC)

DL Review Day 1

W
ir

e

14vgenty

• Identify locations in image
where LC and HC exist

• Pixel intensity threshold is
applied per plane
• U — LC: 10 HC: 70
• V — LC: 10 HC: 60
• Y — LC: 10 HC: 40

HC

LC

Track Pixel Analysis

HC regime LC regime

• Analyze track pixels only
1. Find clusters in two charge

scales: Low Charge (LC) &
High Charge (HC)

DL Review Day 1

W
ir

e

14vgenty

• Identify locations in image
where LC and HC exist

• Pixel intensity threshold is
applied per plane
• U — LC: 10 HC: 70
• V — LC: 10 HC: 60
• Y — LC: 10 HC: 40

HC

LC

Track Pixel Analysis

HC regime LC regime

• Analyze track pixels only
1. Find clusters in two charge

scales: Low Charge (LC) &
High Charge (HC)

DL Review Day 1

W
ir

e

MicroBooNE Simulation Preliminary

FIG. 3. Low charge (blue) and high charge (red) contours are
found in the example 1µ1p event. The HC contour clusters a
collection of proton pixels which have a high pixel intensity.
The single LC contour encloses all pixels in this track image
as they are all above the 20 ADC threshold.

values correspond to 10% of the average pixel value for
a proton track on each plane. Pixels with values below
20 ADC count are not considered. Once the pixel ranges
are separated, the algorithm finds groups of LC and HC
pixels by applying the OpenCV contour finder. This step
defines the LC and HC clusters. Pixels that satisfy to
the HC condition are also included in the LC clusters, to
avoid hallow clusters. HC clusters are therefore a subset
of the LC clusters.

Next the algorithm performs a shape analysis by break-
ing down LC and HC clusters which are not linear. For
example, the blue LC contour shown in Figure 3 has an
obvious bend or “kink” in it. For each cluster, the al-
gorithm computes the “convex hull” which the smallest
convex polygon which bounds the original cluster. Fig-
ure 4, top image, shows an example of convex hull (purple
polygon). The algorithm identifies the sides of the convex
hull which are far away from their corresponding sides on
the contour.

The point on the contour that is farthest away from the
corresponding hull side is called the “defect point”, and
is a location where the cluster is potentially bending and
changing direction. If the convex hull side is far enough
away (5 pixels) from the defect point, the contour is then
broken into two at the defect point. The bottom images
shows the three clusters obtained after this stage, 1 HC
cluster and 2 LC clusters. The algorithm then iteratively
breaks down all clusters into linear segments until no

5

defects point remain.

16vgenty

U• Analyze track pixels only
1. Find clusters in two charge

scales: LC & HC
2. Chunk shape analysis

Track Pixel Analysis

• Compute the convex hull for
each cluster
• smallest convex polygon

which encloses all points

• Identify where the cluster is
curving by finding defects
• points on original cluster far

from convex hull
• require defect of a certain

size

• Find the line from the hull,
though defect point, and
crossing the cluster

Defect point

Defect line

DL Review Day 1

W
ir

e

W

ir
e

MicroBooNE Simulation Preliminary

17vgenty

• Analyze track pixels only
1. Find clusters in two charge

scales: LC & HC
2. Chunk shape analysis

- Compute convex hull
- Find defects

3. Split cluster into straight
tracks until all defects are
removed in track image

Track Pixel Analysis

DL Review Day 1

W
ir

e

Tracks: 1,2,3,4,5,6

MicroBooNE Simulation Preliminary

FIG. 4. The convex hull (purple) is computed for the LC
contour (blue). A defect is found on one of the convex hull
edges. Top : A defect point (green) is found on the LC con-
tour, more than 5 pixels away from the corresponding convex
hull edge. The defect point indicates the location where the
cluster is bending. Bottom : The LC cluster is then broken
into two clusters at the defect point using the defect point.
The breaking procedure is carried out for each contour until
no defect points remain on the cluster.

The collection of defect points are the first set of
vertex seeds.

The second set of vertex seeds is found using a
Principal Component Analysis (PCA) procedure which
fits the clusters to a straight line hypothesis. The
PCA is a linear approximation which minimizes the
perpendicular distance between the data (the pixel
points), and the estimated line. A PCA is calculated for
each broken cluster separately. Since all clusters have
been broken into linear segments by removing defects,
a linear approximation is suitable. The algorithm then
computes the intersection of all possible PCA lines on
the plane. If the lines intersect near a location on the
image with charge, the point is saved and is added to
the set of vertex seeds. Intersection points far from any
charge are ignored. The top image in Figure 5 shows the
three PCAs found in the event example. Although three
intersections points are found, only two correspond to
pixels with charge and are then kept (middle image).

19vgenty

Track Vertex Seeds
• Determine vertex seeds

1. Location of defect point
• tell you where contour is curving

2. Location of PCA crossings

PCA crossing

PCA line

• Apply principle component analysis
(PCA) to each straight cluster

• extrapolate 2D track direction

• Find PCA crossing points between
lines

• Indicate curvature where
large kink may not exist

• Locate the LC-HC
transition

• Crossing point must be near
charge!

DL Review Day 1

W
ir

e

W

ir
e

MicroBooNE Simulation Preliminary

19vgenty

Track Vertex Seeds
• Determine vertex seeds

1. Location of defect point
• tell you where contour is curving

2. Location of PCA crossings

PCA crossing

PCA line

• Apply principle component analysis
(PCA) to each straight cluster

• extrapolate 2D track direction

• Find PCA crossing points between
lines

• Indicate curvature where
large kink may not exist

• Locate the LC-HC
transition

• Crossing point must be near
charge!

DL Review Day 1

W
ir

e

W

ir
e

MicroBooNE Simulation Preliminary

FIG. 5. Top: For each broken cluster, a 2D PCA line is fit
to the cluster. Three PCA lines (grey dashed) are found in
this example, one per cluster. Bottom: The points where the
PCA lines cross are shown as purple stars and are called PCA
crossing points. Only two PCA lines cross near charged pixels
producing two PCA crossing points. The third PCA crossing
point is not located on charged pixels and is ignored. Vertex
seeds found in the example 1µ1p event. The purple stars are
vertex seeds from PCA crossing point locations.

This type of vertex seed helps find the 2D location where
tracks which may be changing direction in the image.
Also, using a linear approximation for the clusters gives
an additional set of points than the defects points,
increasing the efficiency to find the actual vertex.

The final set of vertex seeds is composed of both the
breaking down of clusters and the PCA intersections.
The proximity of the seeds from cluster breakdown
and PCA crossing is a strong indication of the actual
vertex location. Each of these 2D points are considered
a vertex ”seed” and serves as a starting points for 3D
vertex search.

The algorithm makes use of the fact that a correct
vertex will appear near the same time tick in each view
to reduce the seed sample to the time-coincident ones.
The X position of these candidates can be determined by
using the trigger time and the known drift speed to match
the time tick to a X position.The Y and Z positions can
then be determined by using wire coincidence between

6

two or three planes.
The algorithm then performs an exhaustive search for

a 3D vertex around each seed by minimizing a quan-
tify called the “angular metric”. This angular metric is
a single quantity which measures the likeliness of two
tracks being emitted radially outward at the same po-
sition across two or more planes. This metric will be
minimized when a point in 3D space is found where the
2D projections indicates that particles coming out of a
single point.

The algorithm begins a search for a 3D vertex by com-
bining images across two or three wire planes. The fol-
lowing operation is applied to every vertex seed on each
plane. Circles of radius 6 and 12 pixels are drawn with
the given vertex seed at the center. The circle size with
the greatest number of clusters coming out is used. In
cases where the same number of clusters cross the circles,
the largest circle is kept. The algorithm then identifies
the points at which the out-going clusters cross the cir-
cle. For each pair of out-going clusters, the algorithm
evaluates two angular quantities:

1. The first angular quantity, θ, is the smallest angle
between the center of the circle, and each pair of
cluster-circle intersection points.

2. The second quantity, φ, is calculated in the
following way. At each cluster-circle intersection
point a small region of 7×7 pixels is identified.
In this region, a PCA of charge carrying pixels is
computed, and provides an estimate of the local
cluster directions. φ is the smallest angle between
each local PCA pair.

The definitions of the two angles are summarized at the
top of Figure 6.

Starting at the vertex seed, two lines segments are
drawn from the initial local PCA approximations. The
circle center is then stepped in increments of 1 pixel along
the straight line segments. When the local track direc-
tion on the circle boundary (φ) matches the direction
between the center and crossing points (θ) the difference
is small and indicates that the circle is at a location where
the tracks are coming out straight from the center point,
likely indicating a kink feature. The algorithm then com-
putes the magnitude difference dΘ = |θ−φ|. At each step
dΘ is evaluated and stored per time tick. The stepping
stops when the algorithm has scanned a 40x40 pixel re-
gion around the initial vertex seed. This procedure is
repeated for each vertex seed in the plane. The evolu-
tion of dΘ as a function of the corresponding time tick
is represented at the bottom of Figure 6. If two vertex
seeds happen to scan the same time tick, the lowest dΘ
value is stored.

Next, the dΘ = |θ − φ| versus time-tick maps for the
three views are summed to produce a single distribu-
tion of dΘ values. The summed magnitude difference
is the angular metric to be minimized to find the best

Φϴ

Zoom Zoom

MicroBooNE Simulation Preliminary

Φ
ϴ
-

FIG. 6. For each candidate vertex position, a circle is drawn
centered at the vertex position, the tracks intersects the circle
boundary at two points. The yellow lines link the track-circle
crossing points to the circle center. The angle between the
two yellow lines is θ. The red lines represent the local PCA
approximation at the track-circle intersection. The angle be-
tween the red lines is φ. The gray dashed lines represent
the initial PCA lines. The circle is scanned along the initial
straight line PCAs and the magnitude difference of θ and φ
is recorded per time tick. The bottom plot shows the result-
ing spectrum for the scanning procedure applied centered at
the vertex seed near the kink point. The graph is dΘ versus
time. A dip in the magnitude difference is observed at the
kink point when the two angles agree. The spectrum is flat
in the left and right regions where no time tick is scanned.

vertex seed. The distribution is smoothed using a rolling
mean approximation of 6 time ticks. Finally the algo-
rithm searches for local minima in the spectrum to find
regions where a coincident vertex feature appears across
multiple planes as shown in Figure 7. In each plane, the
circle at the local minima time is examined and matched
across planes using wire coincidence. If coincident wires
are found, then a 3D vertex is claimed. An equivalent
procedure is carried out by performing the search for lo-
cal minima in the angular spectrum in overlapping wire
regions.

To obtain the 3D vertex position, the vertex time pro-
vides the X-coordinate. The Y and Z spatial information
of the vertex is extracted from wire coincidence across

7

U

V

Y

U

V

Y

MicroBooNE Simulation Preliminary

FIG. 7. The scanning procedure is carried out for each
vertex seed across three planes. The top left three images
show the history of circles scanned at each vertex seed. The
top right three spectra show the angular metric as a function
of time tick. The bottom plot shows the sum of the three
spectra summed together after a rolling mean approximation
is applied. A gradient algorithm finds a single local minimum
present in the yellow band. This time tick is searched for on
each plane to estimate a 3D vertex.

any pair of U , V , and Y planes. Finally, the resulting 3D
vertex is refined using a 3D volume scan in a (4×4×4)cm3

region around the vertex. For each location in that space,
the 2D projections of the point in 3D space are estimated,
and the dΘ variable is estimated. This stage allows to
further improve the estimation of the best 3D location of
the vertex.

V. CORRELATING PARTICLES ACROSS THE
THREE VIEWS

Once the 3D vertex is identified, we must correlate the
images of each particle that emanates from the vertex
across the three views. This is done in two steps. First,
in each view, unique particles are identified using 2D clus-
tering. Then, these 2D clusters are matched across views.
The event is then analyzed for a gap at the vertex. In
the case of the two-track analysis, for example, two close,
untagged cosmic rays may be misreconstructed through
the other steps in the analysis chain, but will have an
identifiable gap that allows tagging.

Entries 7115
Mean 0.2629
Std Dev 0.2243

 / ndf 2χ 75.05 / 45
 gausN 10.646± 0.354

 µ 8.48386±0.03009 −
 σ 3.2994± 0.3135

 expoN 10.3799± 0.2561
 τ 2.2643± 0.2831

0 2 4 6 8 10
R (cm)∆

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1R
)

∆
P

(

Entries 7115
Mean 0.2629
Std Dev 0.2243

 / ndf 2χ 75.05 / 45
 gausN 10.646± 0.354

 µ 8.48386±0.03009 −
 σ 3.2994± 0.3135

 expoN 10.3799± 0.2561
 τ 2.2643± 0.2831

MicroBooNE Simulation Preliminary

FIG. 8. Vertex resolution for well reconstructed 1µ1p events.
The 3D distance between the Monte Carlo neutrino vertex
and the reconstruction vertex is shown. Each bin ∆Ri is
weighted to the volume of the spherical shell of radius ∆Ri
and thickness 0.2 cm, to obtain the probability density func-
tion of the vertex resolution. The distribution is described by
three populations: a Gaussian centered on the actual vertex
position, and with a resolution of σ = 0.3 cm, the size of a
pixel, an exponential population, of decay length τ = 0.3 cm;
vertices in that population tend to be reconstructed on pixels
nearby the pixel the true vertex projects to and a low statis-
tics tail described by the 1/R2 power law, due to the scaling
applied to each bin; these vertices are mistakenly placed on
nearby cosmics, and with no correlation to the actual neu-
trino.

VI. 3D VERTEX STUDIES

In this section, we discuss the quality of the vertex
reconstruction code. We consider the resolution of the 3-
D vertex, optimization of vertex-finding scanning-radius
is changed, and the efficiency of vertex finding for the
MicroBooNE detector.

A. Vertex Resolution

The quality of the track image vertex-finding can be
assessed using MC by considering the difference between
the 3D distance of the simulated true neutrino vertex to
the reconstructed vertex. This is shown in Figure 8. The
Probability Density Function is obtained by scaling each
bin by the volume of space around the vertex with a given
∆R : π∆R2 · dR where dR is the thickness of the bins.
Three populations appear in the distribution:

• a Gaussian, centered on the true vertex position,
and of resolution σ = 0.3 cm, corresponding to the
size of a pixel, corresponding to events that are be-
ing reconstructed on the same pixel the true vertex
projects to,

• an exponential of typical length τ = 0.3 cm, corre-
sponding to vertices reconstructed on pixels nearby
the pixel the true vertex projects to,

8

• a low statistics tail described by the 1/R2 power
law, due to the scaling applied to each bin; these
vertices are mistakenly placed on nearby cosmics,
and with no correlation to the actual neutrino.

It is to be noted that the first three orders of magnitude of
the distribution lie within the first 2 cm from the vertex,
with an overall resolution of ∼0.3 cm, the size of a pixel.

B. Vertex Efficiency

The vertexing algorithm is sensitive to four upstream
factors which impact the ability to find a consistent 3D
vertex across planes. We analyze each factor separately
to determine their impact on vertex reconstruction effi-
ciency. The four factors are:

• Dead wires

• Cosmic pixel tagging

• cROI placement on image

• SSNet pixel classification

For this study, we use a “1µ1p Golden Sample”–
simulated events within the fiducial volume that is 10 cm
from any edge of the active volume, that have only one
muon and one proton with kinetic energy greater than
35 MeV and 60 MeV respectively at the generator level,
and that have a muon contained in the active volume.

We decouple the efficiency into two steps: first, the effi-
ciency to find the correct cROI. A found cROI is correct
if it contains the true neutrino vertex position. Then,
once the cROI is found, the efficiency to find the ver-
tex. Many vertices can be found per event, due to the
possibility to place vertices on remaining un-tagged cos-
mic rays, or possible kinks in neutrino-related tracks. We
consider the vertex correctly reconstructed if a vertex is
found within 5 cm of the true vertex position.

As described above, the vertex reconstruction algo-
rithm is particularly sensitive to four upstream factors.
First, if the neutrino vertex lies in a dead wire region
across two or more planes then no neutrino induced pix-
els will appear in the image and no vertex can be found.
Second, the neutrino can only be searched for inside a re-
constructed well reconstructed cROI, such that the cROI
contains the neutrino vertex in at least two planes. Third,
the SSNet pixel classification network has inefficiency at
labeling the electron and gamma type particles as shower
and the muon and proton type particles as track. This
can cause an inefficiency in the vertex finding algorithm
where a shower-on-track-end or kink in the track image
may not be present and consistent across two or more
planes. Finally, the cosmic ray pixel tagging algorithm
for marking through-going muons in the image may tag
neutrino induced pixels, removing them from the image.

0 500 1000 1500 2000
True Neutrino Energy [MeV]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
ve

n
t

F
ra

c
ti

o
n

1µ1P N=4111

Good cROI N=3122
Good vertex N=2153

MicroBooNE Simulation Preliminary

0 500 1000 1500 2000
True Neutrino Energy [MeV]

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
c
y

Find region of interest: 0.76
Find vertex: 0.52

MicroBooNE Simulation Preliminary

FIG. 9. Good cROI efficiency and overall vertexing efficiency
as a function of true neutrino energy for 1µ1p events.The
red histogram corresponds to all generated events, the blue
histogram are events which have a Good cROI, and the black
histogram are events which are well reconstructed. The ratio
of histograms is shown in the bottom plots. The orange and
magenta lines are one parameter fits to the cROI-finding and
vertex-finding efficiencies respectively.

Figure 9 shows the efficiency for finding a cROI, and
then the efficiency finding the vertex. The average effi-
ciency for finding the good cROI is 76%, and the aver-
aged efficeincy for finding the vertex, from a found cROI
is 69%. The overall efficiency, of finding a cROI, then a
vertex, from the original generated MC events is 52%.

Figure 10 shows the spatial dependency of the vertex
finding efficiency when applying all upstream stages of
the reconstruction. Two major un-responsive regions can
be identified that have a noticeable impact on the ver-
texing algorithm. There is a band of dead wires shown
on the Z plane around 700 cm on the Z axis where no re-
constructed vertex is found. In addition, there is a band
of low efficiency region starting at Y value of approxi-
mately −100 cm sloped upward to Z value of approxi-
mately 200 cm. Both these regions are consistent with
two large dead wire regions within the MicroBooNE de-
tector.

9

MicroBooNE Simulation Preliminary

FIG. 10. Efficiency for finding a well reconstructed 1µ1p
vertex in the XZ (top) and YZ (bottom) planes. Each cell is
the ratio of number of events with well reconstructed vertex
to the number of neutrino events in that cell.

VII. 3D TRACK RECONSTRUCTION
ALGORITHM

A. 3D track finding

The reconstruction of 3D tracks is required to obtain
the track kinetic energy. We convert the 3D length of the
track to kinetic energy using the known stopping power
of each type of particle in liquid argon. The full track
length cannot be accurately inferred from the 2D im-
ages, thus 3D reconstruction is necessary. Rudimentary
particle identification is also necessary in order to apply
the appropriate stopping-power conversion.

Track reconstruction is particularly sensitive to the
quality of the image on a large scale, and to data-Monte
Carlo differences. An interruption of the charge deposi-
tion along the track, due to dead or noisy wires, waveform
deconvolution artifacts, etc., may lead to a wrong recon-
structed length and ultimately to the reconstruction of
an unphysical energy.

Because of the sensitivity of the OpenCV-based
pixel clustering to dead wires and SSNet labeling
continuity, only the position of the vertex is used
for track reconstruction, not the particle-by-particle
clustering. Moreover, the location of the vertex within
the cROI may cause the tracks and shower to exit
the cROI. If this happens, although the vertex can be
identified, the particle clustering may not reach the
end of the tracks and showers, causing a misreconstruc-
tion of the tracks and showers. Searching for the 3D
path followed by the track all the way to the end of the
track is thus performed by a separate tracking algorithm.

The track finding algorithm takes as input the full
ADC images for each of the three planes and the ver-
tex 3D point. No other information is used. The ADC
image is then “thresholded” by bringing to zero all pixels
of value less than 15 ADC.

The reconstruction of a track finds a set of 3D points
that belong to a given track by performing a stochastic
search in the neighborhood of previously found 3D points,
starting with the vertex position found in the previous
section. A regularization is then performed to find a
minimal set of ordered 3D points that describe the track
at the required spatial resolution. Finally, observables
such as length, local and average charge deposition, and
angles can be estimated.

Given a 3D point on a track (the vertex, or an al-
ready found 3D point), finding the neighboring points,
and following the track as far as possible, is achieved by
iterating the following steps as long as new 3D points can
be found:

• The seed of the reconstruction step is placed at the
last found point

• A set of random 3D points is picked inside a sphere
of radius 2 + 4 ∗ e(−N/3) cm, where N represents
the number of points already found in that track.
The purpose here is to allow a wider search around
the vertex point, but once a track is found, the
restricted radius helps to prevent the track recon-
struction from jumping to a nearby track.

• Only the points that project back on pixels with
non-zero charge deposition on all planes are kept,
with at most one plane on which the point projects
on a dead wire.

• New points can only be added if the sum of the
ADC values of the deposited charge on the pixels
on which they project is greater than that of the
already placed points of that iteration.

At this point, we have a set of neighbors to the seed.
Some of these points are not relevant, because they are
too close to an already found point or track. They are
rejected based on the following criteria:

• New points cannot be placed closer than 0.5 cm
from an already placed point

• New points cannot be placed closer than 3 cm from
an existing track.

All the remaining points at this stage are added
to a proto-track, a cloud of un-sorted 3D points that
correspond to non-zero pixels. The point within the new
found points that is the furthest away from the current
seed is now used as the new seed and that phase is
iterated as long as new points can be found. This phase
ensures that explored region is pushed as far as possible
along the track.

However, the points in the proto-track are not ordered
and do not follow a linear path. They zig-zag back and
forth, and within the thickness of the track. The next
step is to order the points by linking each one to its most

10

likely neighbor. This next neighbor is found my minimiz-
ing a global score :

global score = 5 · L1 + 0.1 · L2

+ 2 · (2− cos θ)

− 10 · (2− cosφ)

The distances L1 and L2, as well as the angles θ and
φ are summarized in the cartoons on Figure 11. The
dots represent the set of 3D points in the proto-track.
The black dots are the points that have been sorted
through, and the light blue dots are the remaining
un-sorted points. The green and red dots correspond
to the vertex and end of track respectively. The end
point is selected as the 3D point the furthest away from
the vertex. The red broken line corresponds to the path
found within the sorted 3D points. For each candidate
within the points that are still un-sorted (here the dark
blue point) the two lengths and angles are computed :
L1 is the distance to the last selected 3D point, L2 is
the distance to the end of the proto-track, θ is the angle
from the last two sorted points to the candidate, and φ
is the angle between the candidate, the last sorted point,
and the end of the proto-track. Once the points in the
proto-track have been ordered, there is a logical path
from one point to the next, and some points are rejected
as they are never the best candidates. However, at this
point, the track still zig-zags and is formed by too many
3D points to be a good representation of the particle
path, so a second stage is required.

L1
L2

φ

θ

FIG. 11. Once the set of uncorrelated 3D points is found, a
sorting algorithm finds a logical path. From a sorted point,
the other candidates (here dark blue point) are evaluated
based on the distance to already sorted points (black points),
the remaining distance to the end of the track (red point) and
the two angles, with respect to the last sorted points (θ) and
to the end of the track (φ). The green point represents the
vertex and the light blue points the points of the found set
that have not been sorted through yet.

The second stage smooths the path and makes it more

direct. We loop through the set of 3D points, rejecting
superfluous points based on several criteria:

• a new set of point is created by performing a rolling
average of two consecutive point,

• the new set is ordered by moving to the closest
neighbor,

• the new point must be closer to the end point than
the previous one,

• the distance from previous point cannot be more
than 5 cm, this indicates a possible jump to another
near-by track,

• the points that deviate by less than 0.5 cm from the
line between points n-1 and n+1 are removed.

B. Finding the other tracks

These operations are then iterated as long as a new
track is found. To prevent the algorithm from finding
the same track multiple times, the pixels corresponding
to a found track are masked in the ADC image. Two
regimes are used to mask the pixels.

• If the 3D points are within 2 cm of the vertex :
pixels within a 3-pixel sleeve around the projected
track on each plane are erased.

• If the 3D points are beyond 2 cm of the vertex :
pixels within a 6-pixel sleeve around the projected
track on each plane are erased.

Pixels are erased on a smaller sleeve close to the vertex
in order to allow the algorithm to be efficient at finding
tracks that overlap, i.e. that would have a small
projected angle, in one of the three planes.

Once no new track is found, we iterate the process to
the end points of the tracks already found. Indeed, the
end points were selected as the point the furthest away
from the vertex, but in some cases, if multiple scattering
cases the track to curl up, the actual end of the track is
not the furthest point. Starting at the end of a found
track and looking for a missing portion of track helps
reducing these cases. The two portions of the same tracks
are then put together in a single new track.

C. Self-diagnostic

Once all the tracks associated with a vertex have been
found, it is important to recognize and possibly reject
cases where the reconstruction failed.
This cross-check relies on a set of random points thrown
on a spherical shell of radius 3 cm at the end point of each
track. Only the forward going points with a solid angle of

11

750 800 850 900 950 1000
wire number

3000

3500

4000

tim
e

tic
k

210 pi
xe

l A
D

C
 v

al
ue

750 800 850 900 950 1000
wire number

3000

3500

4000

tim
e

tic
k

210

pi
xe

l A
D

C
 v

al
ue

1000 1050 1100 1150 1200
wire number

3000

3500

4000

tim
e

tic
k

210

pi
xe

l A
D

C
 v

al
ueMicroBooNE Simulation Preliminary

MicroBooNE Simulation Preliminary

MicroBooNE Simulation Preliminary

FIG. 12. Once the end of a track is reached, random points
are thrown on a spherical shell to estimate if the end of track
has actually been found or if the reconstruction ended early
because of dead wires or a faint track on an induction plane.
The three cases are represented here: (top) the track ends
while on a dead region, (middle) the track ends at the end of
the charge deposition on that plane, and (bottom) the track
ends while the charge deposition continues on that plane.

65◦ are kept. For each track, the fraction of points that
project on pixels corresponding to dead wires, empty pix-
els and pixels with charge deposited is evaluated, and a
label is attributed to the end point on each plane. Fig-
ure 12 shows the three possible case we distinguish. The
black dots and line correspond to the projection on a
given wire plane of the reconstructed 3D points, the col-
ored pixels are the charge deposition, and the uniformed
blue region correspond to dead wires.

• (top) the reconstructed track ends in a region with
dead wires,

• (middle) the reconstructed track ends at the end
of the charge deposition on that plane,

• (bottom) the reconstructed track ends while the
charge deposition continues on this plane.

In the case where the charge deposition seems to con-
tinue, it is clear that the reconstruction failed to find
the actual end of the track, but in the cases where the
track ends at the end of the charge deposition or on an
un-responsive region, one needs to have a more global
approach and look at the other planes.
Indeed, a track that reaches the end in an un-responsive
region in two planes but for which the third plane shows
that, at least in that plane, the end of the charge deposi-
tion is reached, can be considered as a good reconstruc-
tion. However, in the case where the charge deposition
seems to continue in the third plane, this indicates that
the reconstruction did not reach the end of the track.

Another case that can be addressed in this way is when
the track local direction is almost co-planar to a wire in
the induction planes, i.e. the track becomes locally ver-
tical in one of the images corresponding to the U or V
wire planes. The signal in these planes being bipolar, the
tracks can appear faint, or interrupted. In that case, the
reconstruction will sometimes stop at the interruption
point. This end point is going to be classified as cor-
rect since it appears that, indeed, the track has stopped.
In the other two planes however, the end points will be
classified as bad because the charge deposition seems to
continue.

Based on the label of the end points in the various
planes, a label is attributed to the vertex as shown in
Table I.

Dead Empty Track label
3 0 0 Dead Wire
2 0 1 Dead wire
2 1 0 OK
1 2 0 OK
1 1 1 Faint track
0 2 1 Faint track
0 1 2 Faint track

TABLE I. Vertex label attribution depending on the labels of
the end points in the various planes.

In the rest of the paper, a well reconstructed vertex is
a vertex that satisfies all these conditions: a vertex with
exactly two tracks of more than 5 cm that both ends at
the end of the charge deposition.

From the reconstructed 3D-path of each particle exit-
ing a vertex, several key observables can be estimated.
As we describe these observables in the subsections be-
low, we will characterize the results using a 1µ1p MC
sample. In this sample, all events are generated with ex-
actly one proton above 60 MeV and exactly one lepton
above 35 MeV. A fiducial volume selection of 10 cm is
applied on the vertex position, and a containment crite-
rion applied to the lepton only. In addition to the neu-
trino interaction, a cosmic background from CORSIKA
is overlaid onto the images.

12

0 5 10 15 20
Average local ionization (ADC/pixel)

0

100

200

all tracks

muon-like deposition

proton-like deposition

MicroBooNE Simulation Preliminary

FIG. 13. Average charge deposition along each reconstructed
track. The red and blue distributions represent respectively
the tracks with the highest and lowest average ionization in a
given vertex.

VIII. OBSERVABLE ESTIMATIONS AND
PERFORMANCE EVALUATION

A. Local ionization

For each 3D point, the local ionization for a given plane
is computed by integrating the values of non-zero pixels
in a 2 pixel radius around the projection of the 3D point
on that plane. The values measured on the three planes
can then be used individually, or summed across planes.
A scale factor 3/N is applied where N is the number of
planes on which a non-zero value was found. This scale
factor allows to correct for a possible plane in which the
3D point projects onto an un-responsive region.

Once the local charge deposition around each 3D point
has been acquired for each of the three planes, one can
compute the Average ionization as the local ionization
averaged over the reconstructed 3D points of a given
track.

The average ionization reconstructed for 1µ1p simu-
lated νµ events in MicroBooNE is shown in Figure 13.
At this stage, no particle identification has been per-
formed, the blue and red populations have been separated
by identifying the muon as the track with the lowest av-
erage ionization within the pair of reconstructed tracks
(blue distribution) and identifying the proton as the track
with the highest average ionization (red distribution). It
is important to note that these particle identifications are
relative within a pair of reconstructed particles, assum-
ing one is a proton and the other a muon. All vertices
with two reconstructed tracks will have tracks identified
as muon or proton with that method. A more definitive
particle identification will be performed later on in the
analysis chain.

φ2

X

Y

Zφ1
θ1

θ2

FIG. 14. Description of φ and θ angles for each particle in
MicroBooNE. φ is the angle of a track projected in the (X,Y)
plane with respect to the X axis, and θ is the angle of a track
with respect to the beam axis (Z axis).

 / ndf 2χ 90.67 / 45
Constant 4.2± 122.4

 µ 0.1356±0.5201 −
 σ 0.136± 5.582

100− 50− 0 50 100
)°Opening angle (reco-true) (

0

50

100

150 / ndf 2χ 90.67 / 45
Constant 4.2± 122.4

 µ 0.1356±0.5201 −
 σ 0.136± 5.582

0 50 100 150

) °true (
0

50

100

150

) °
re

co
 (

0

51

MicroBooNE Simulation Preliminary

(a)

FIG. 15. The difference between the reconstructed opening
angle and the true opening angle shows a (6.0± 0.1)◦ resolu-
tion. The insert shows the linearity of the reconstruction.

B. Angle Estimation

For each individual track, the 3D points within 15 cm
of the vertex are averaged. The vector from the vertex
to that mean point describes the path of the particle at
short range. The angles φ (projected angle in the (X,Y)
plane) and θ (angle with respect to the beam axis) are
evaluated for each track as described in Figure 14.

Once the angle of each track has been computed, an
opening angle can be evaluated. Figure 15(a) shows a
comparison of the reconstructed opening angle and the
true opening angle. An overall resolution of (5.5± 0.1)◦

is found. The insert shows the linearity of the opening
angle reconstruction.

13

C. Energy Estimation

1. Individual tracks

The length of each track is the sum of distances be-
tween two consecutive points. From the length of a track,
a kinetic energy can be obtained, assuming a given parti-
cle identification, based on the stopping power of muons
and protons in liquid argon [19] [20]. As no particle iden-
tification has been performed yet, energies for both hy-
potheses are estimated for all tracks. It is left to the
analyzers, downstream, to decide which one to use based
on more rigorous particle identification.

For the sake of this discussion, and evaluating the
tracker’s performances, the attribution of proton or
muon identification is performed as previously, by using
the average ionization and calling muon the particle
with the lowest average ionization and proton the one
with the highest.

The dependency of the reconstruction efficiency with
respect to the energy of the individual particles in the
vertex, after absolute truth-based calibration, is shown
in Figure 16. 16(a) shows the proton energy distributions
and 16(b) shows the muon energy distributions. The red
and green histograms show the true distributions for the
generated and well reconstructed populations, and the
blue histograms show the reconstructed distributions.
The bottom plot corresponds to the bin-to-bin ratio of
the green to red histograms. A clear down-going trend
is visible for the muon distribution. The lower efficiency
at high energies comes from the fact that longer tracks
have a higher probability of encountering dead region,
or be interrupted. This probability increases linearly
with the length, hence the steady, linear behavior of the
efficiency. The proton distribution shows a lower slope,
as the proton length remains shorter than the muon
one, and thus plays a less dominant role in driving the
efficiency behavior.

2. Neutrino energy estimation

A length-based estimation of the neutrino energy
(Evis

ν) can be achieved assuming a simple 1µ1p CCQE
interaction by summing the kinetic energies of the re-
constructed muon and proton, accounting for the energy
necessary to create a proton and a muon out of a neutron,
and using an effective nuclear binding energy B:

Evis
ν ∼ KEp + KEµ +mµ +B (1)

Figure 17 shows the length-based energy using the
true muon and proton energy compared to the true
neutrino energy. An offset of sin 146 MeV is required
to align the linear population of the distribution on

0 200 400 600 800 1000
0

50

100

150

N
(/

10
.0

 M
eV

)

True proton E (generated events)

True proton E (reco'ed events)

Reconstructed proton E

0 200 400 600 800 1000
 proton E (MeV)

0

0.5

1

E
ffi

ci
en

cy

MicroBooNE Simulation Preliminary

(a)

0 200 400 600 800 1000

0

50

100

N
(/

10
.0

 M
eV

)

True muon E (generated events)

True muon E (reco'ed events)

Reconstructed muon E

0 200 400 600 800 1000
 muon E (MeV)

0

0.5

1

E
ffi

ci
en

cy

MicroBooNE Simulation Preliminary

(b)

FIG. 16. Single particle energy distributions for protons (a)
and muons (b). The red histograms show the true generated
distribution for 1µ1p events, the green histograms show the
true energies of the well reconstructed events, and the blue
histograms show the reconstructed energies of the well recon-
structed events. The bottom plots show the dependency of
the global track reconstruction efficiency, defined as the bin-to
bin ratio of the green to red histograms.

the identity line, corresponding to the muon mass and
40± 10MeV of effective nuclear binding energy [21].

In the rest of this discussion, we will use true Evis
ν as

reference to the true visible energy as it is the variable
we can approach best in a truly perfect reconstruction.

Figure 18 shows, with the same color code as Figure
16, the visible energy spectrum of all the generated 1µ1p
neutrino events and the evolution of the efficiency with
respect to the neutrino visible energy. The average effi-
ciency of the vertex reconstruction is (56±1)%, however,
a clear, linear, decreasing trend is visible, consistent with
the behavior observed in the muon and proton single-
particle efficiencies from Figure 16.

Figure 19(a) shows a comparison of the true and re-

14

0

5

10

15

20

25

0 500 1000 1500 2000
(MeV)true

νE

0

500

1000

1500

2000
 +

 1
46

 M
eV

tr
ue µ

+
E

tr
ue

p
E

MicroBooNE Simulation Preliminary

FIG. 17. Comparison of the true caloritmetric neutrino en-
ergy to the true neutrino energy from the Monte Carlo sim-
ulation. An offset of ∼ 146 MeV is required to align the lin-
ear population of the distribution on the identity line, corre-
sponding to the muon mass and ∼ 40 MeV of effective nuclear
binding energy.

500 1000 1500 2000
0

100

200

300

N
(/

40
.0

 M
eV

)

 (vertex found)visible
νTrue E

 (full reco.)visible
νTrue E

visible
νReconstructed E

500 1000 1500 2000
 (MeV)visible

ν true E

0

0.5

1

E
ffi

ci
en

cy

MicroBooNE Simulation Preliminary

FIG. 18. Relative efficiency as a function of the true energy
for events that are being well reconstructed, i.e. for which the
reconstruction reaches the end of the tracks and with only two
found tracks above 5 cm.

constructed visible energies. Each slice in true energy is
fitted by a Gaussian around its mean value. The fit re-
sults are shown as the black dots, and the errors on these
dots correspond to the σ of the fitted Gaussian. A linear
fit performed on the result shows a linearity with a slope
factor of 0.97± 0.01 and an offset of (23± 12)MeV, for a
neutrino energy range of [200− 1000]MeV.
Figure 19(b) shows the evolution of the fractional resolu-
tion (σ/µ from the previous Gaussian fits) as a function
of energy. The errors are the errors on the parameters
estimated by the Gaussian fit. The relative resolution is
fitted by the function:

σ

E
=

√
a2

E
+ b2 +

c2

E2
(2)

0

10

20

30

40

50

0 500 1000 1500 2000
 (MeV)visible

νtrue E

0

500

1000

1500

2000

 (
M

eV
)

vi
si

bl
e

ν
E

 / ndf 2χ 2.036 / 27
offset 11.62± 27.1
slope 0.01729± 0.9696

 / ndf 2χ 2.036 / 27
offset 11.62± 27.1
slope 0.01729± 0.9696

MicroBooNE Simulation Preliminary

(a)

200 400 600 800 1000 1200
 (MeV)visible

νtrue E

0

0.02

0.04

0.06

0.08

vi
s

ν
E)µ/σ(

 / ndf 2χ 6.871 / 10

a (stochasic) 0.03476± 1.272

b (constant) 0.01232±06 − 1.505e

c (electronic noise) 1.151±06 − 1.842e

 / ndf 2χ 6.871 / 10

a (stochasic) 0.03476± 1.272

b (constant) 0.01232±06 − 1.505e

c (electronic noise) 1.151±06 − 1.842e

MicroBooNE Simulation Preliminary

(b)

FIG. 19. (a) : Comparison of the reconstructed energy to
the true length-based energy. (b) Evolution of the resolution
as a function of the true length-based energy.

where a represents the stochastic term of the resolu-
tion, b is a constant fractional error, and c characterizes
the impact of the noise.

Figure 20 shows the relative error made in reconstruct-
ing the full energy of the neutrino. The distribution
is fitted with two Gaussians, one describes the well
reconstructed events, while the second one describes
the events for which the reconstructed energy does
not reflect the true neutrino energy. The peak of the
distribution shows a bias in reconstructed energy of
∼ 1%, with a resolution of 4.0 ± 0.2%. The events
in the second Gaussian are also labeled as complete
track reconstruction by the self-diagnostic tools, the
apparent energy loss comes from non-ionizing energy
loss processes such as neutron scattering, proton-muon
mis-identification or possible imperfections in identifying
failed tracks reconstructions.

The event shown in Figure 21 is a 974.8 MeV neu-

15

2− 1− 0 1 2
visible
ν

)/true Evisible
ν-true Evisible

ν
(E

0

50

100

150

 / ndf 2χ 130 / 94
 1N 4.8± 127.1

1
µ 0.00135± 0.01726

 1σ 0.00150± 0.04106
 2N 1.556± 8.966

2
µ 0.01343±0.07308 −

 2σ 0.0186± 0.1797

MicroBooNE Simulation Preliminary

FIG. 20. Relative difference between the energy reconstructed
for the interaction (Evis

ν) and the true length-based energy
from the simulation (true Evis

ν). A fit by Gaussian functions
allows to obtain an estimation of the global fractional resolu-
tion of 4.0± 0.2%.

trino (true Evis
ν), producing a 602.9 MeV muon and a

225.9 MeV proton. Figure 21(a) shows the three ADC
images corresponding to the view of each plane cropped
around the neutrino interaction. Figure 21(b) shows the
projections of reconstructed tracks for each plane over-
laid on top of the corresponding ADC images. The
straight vertical light blue lines correspond to the un-
responsive wires. The reconstructed energies are re-
spectively 626.8 MeV for the muon track (red dots) and
220.6 MeV for the proton track (black dots). The re-
constructed length-based energy is 993.4 MeV and con-
stitutes an error of +2% from the true visible energy.

3. Spatial dependency of the efficiency

Figure 22 shows the spatial dependency of the effi-
ciency based on the position of the vertex, projected
on the (X,Z) plane (22(a)), and on the (Y,Z) plane
(22(b)). On the projection on the (Y,Z) plane, regions
with lower efficiency corresponding to large regions with
un-responsive channels are visible. The sharpness of
these regions, however, is lower than for the vertexing
stage itself, as the track reconstruction has moderate
abilities to track across un-responsive wires provided that
the two other planes have a 3D-consistent non zero charge
deposition. However, due to the spatial extension of the
tracks, and the global forwardness of the event, a vertex
a meter upstream of an un-responsive region can fail re-
construction if one of the tracks cross into that region.
Indeed, the un-responsive region around Z ∼ 700 cm in
figure 10 has now moved to Z ∼ 650 cm.

IX. CONCLUSIONS

We have presented a reconstruction method for three-
dimensional event reconstruction of two-track events in
LArTPCs. We have discussed the algorithms within
the context of reconstruction of events in the Micro-
BooNE detector. This reconstruction uses computer vi-
sion and clustering tools to find 3D-consistent vertices,
and a 3D stochastic best neighbor search to reconstruct
tracks emerging from these vertices. Because the future
experiments of the Fermilab SBN program have simi-
lar LArTPC design and run in the same BNB neutrino
beam-line, the code is easily adaptable for SBN use. The
off-beam DUNE program, which will reconstruct atmo-
spheric neutrinos, will also find aspects of the code to be
applicable. The code that can be used to perform this
reconstruction can be found publicly on GITHUB [18].

The main parameters that affect the performance of
the vertexing algorithm are the out-going proton and
muon energies and their opening angle. The vertexing al-
gorithm is also affected by the performance of up-stream
reconstruction stages such as the SSNet labelling, the
cROI finding, and the cosmic pixel tagger. From the out-
put of the vertexing stage, the track finding algorithm is
mainly affected by the un-responsive regions. The de-
pendency of the efficiency on the energy is simply an in-
creased probability of crossing such a region as the track
length increases.

The performance of the vertex reconstruction was op-
timized to precisely place vertices on 3D-consistent kinks
with a maximum efficiency. The track reconstruction is
then ran for all the found vertices. The performances of
the track reconstruction are optimized with the objec-
tive to find nearby tracks with small opening angle, and
to maximize the length of the reconstructed prong but
following a 3D-consistent path of non-zero charge depo-
sition. A layer of smoothing algorithm is then applied
to the found set of points and finally, a self-diagnostic
is performed to ensure that the reconstructed variables
are relevant, and reject the vertices for which the recon-
struction failed to follow the track to its end to increase
the purity of the final sample of events. The efficiencies
of the vertex finding and the track reconstruction are
52 ± 1% and 56 ± 1% respectively. The spatial resolu-
tion of the vertex finding algorithm is of the order of the
wire spacing of MicroBooNE, and the track reconstruc-
tion achieves an energy resolution of 4.1 ± 0.1%. The
spatial reconstruction tools presented here are exploiting
the excellent resolution capabilities of LArTPCs.

Further work will include allowing the tracker to re-
cover tracks by improving its ability to cross through
un-responsive regions. The local ionization will also be
exploited to better pin-point the end of muon tracks and
separate the Michel electron. A spatial correction of the
reconstructed points based on a precise measurement of
the space-charge effect inducing inhomogeneities of drift
field and distorting the reconstructed tracks will also be
performed, further improving the performances of this

16

MicroBooNE Simulation Preliminary

U plane

V plane

Y plane

(a)

MicroBooNE Simulation Preliminary

U plane

V plane

Y plane

p

µ

(b)

FIG. 21. Example of a reconstructed MC event : (a) ADC image of a 974.8 MeV simulated 1µ1p neutrino event producing
a 602.3 MeV muon and a 225.9 MeV proton. (b) Reconstructed tracks are overlaid on top of the ADC image. The event is
reconstructed as a 626.8 MeV muon (red) and a 220.6 MeV proton (black), for a reconstructed Evis

ν of 993.4 MeV.

reconstruction.

ACKNOWLEDGEMENTS

This material is based upon work supported by the fol-
lowing: the U.S. Department of Energy, Office of Science,
Offices of High Energy Physics and Nuclear Physics; the

U.S. National Science Foundation; the Swiss National
Science Foundation; the Science and Technology Facil-
ities Council of the United Kingdom; and The Royal
Society (United Kingdom). Additional support for the
laser calibration system and cosmic ray tagger was pro-
vided by the Albert Einstein Center for Fundamental
Physics. Fermilab is operated by Fermi Research Al-
liance, LLC under Contract No. DE-AC02-07CH11359

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
Z (cm)

0

100

200

300
X

 (
cm

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MicroBooNE Simulation Preliminary

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
Z (cm)

200−

100−

0

100

200

Y
 (

cm
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MicroBooNE Simulation Preliminary

(b)

FIG. 22. Spatial dependency of the tracking efficiency. The
color scale represents the fraction of well reconstructed events
for a vertex in a given location in the detector. As for the
vertexing efficiency, the effects of the two major un-responsive
regions are visible in the (Y,Z) plot (bottom).

with the United States Department of Energy.

[1] B. Fleming, “The MicroBooNE Technical Design Re-
port,” 2012.

[2] R. Acciarri et al., “Design and construction of the mi-
croboone detector,” Journal of Instrumentation, vol. 12,
no. 02, p. P02017, 2017.

[3] A. A. Aguilar-Arevalo et al., “Improved search for νµ →
νe oscillations in the miniboone experiment,” Phys. Rev.
Lett., vol. 110, p. 161801, Apr 2013.

[4] R. Acciarri, C. Adams, R. An, C. Andreopoulos,
A. Ankowski, M. Antonello, J. Asaadi, W. Badgett,
L. Bagby, B. Baibussinov, et al., “A proposal for a three
detector short-baseline neutrino oscillation program in
the fermilab booster neutrino beam,” arXiv preprint
arXiv:1503.01520, 2015.

[5] R. Acciarri, M. Acero, M. Adamowski, C. Adams,
P. Adamson, S. Adhikari, Z. Ahmad, C. Albright,
T. Alion, E. Amador, et al., “Long-baseline neutrino fa-
cility (lbnf) and deep underground neutrino experiment

(dune) conceptual design report, volume 4 the dune de-
tectors at lbnf,” arXiv preprint arXiv:1601.02984, 2016.

[6] C. Andreopoulos et al., “The GENIE Neutrino Monte
Carlo Generator,” Nucl. Instrum. Meth., vol. A614,
pp. 87–104, 2010.

[7] D. Heck, G. Schatz, J. Knapp, T. Thouw, and J. Capde-
vielle, “Corsika: A monte carlo code to simulate extensive
air showers,” tech. rep., 1998.

[8] S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis,
H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee,
G. . Barrand, et al., “Geant4—a simulation toolkit,” Nu-
clear instruments and methods in physics research section
A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 506, no. 3, pp. 250–303, 2003.

[9] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. A.
Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie,
R. Chytracek, et al., “Geant4 developments and appli-
cations,” IEEE Transactions on nuclear science, vol. 53,

18

no. 1, pp. 270–278, 2006.
[10] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai,

T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand,
et al., “Recent developments in geant4,” Nuclear Instru-
ments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equip-
ment, vol. 835, pp. 186–225, 2016.

[11]
[12] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Con-

volutional networks for biomedical image segmentation,”
in International Conference on Medical image comput-
ing and computer-assisted intervention, pp. 234–241,
Springer, 2015.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pp. 770–778, 2016.

[14]
[15] http://opencv.org/.
[16] R. Acciarri et al., “Convolutional neural networks ap-

plied to neutrino events in a liquid argon time projection

chamber,” Journal of Instrumentation, vol. 12, no. 03,
p. P03011, 2017.

[17] R. Acciarri et al., “Noise characterization and filtering in
the microboone liquid argon tpc,” Journal of Instrumen-
tation, vol. 12, no. 08, p. P08003, 2017.

[18] https://github.com/LArbys/dllee_unified.
[19] http://pdg.lbl.gov/2017/AtomicNuclearProperties/

HTML/liquid_argon.html.
[20] https://physics.nist.gov/PhysRefData/Star/Text/

PSTAR.html.
[21] M. Anghinolfi, M. Ripani, R. Cenni, P. Corvisiero,

A. Longhi, L. Mazzaschi, V. Mokeev, G. Ricco, M. Taiuti,
A. Teglia, A. Zucchiatti, N. Bianchi, A. Fantoni, V. Muc-
cifora, P. LeviSandri, V. Lucherini, E. Polli, A. R. Re-
olon, P. Rossi, and S. Simula, “Inclusive electron scat-
tering from an oxygen and argon jet target,” Journal of
Physics G: Nuclear and Particle Physics, vol. 21, no. 3,
p. L9, 1995.

APPENDIX

http://opencv.org/
https://github.com/LArbys/dllee_unified
http://pdg.lbl.gov/2017/AtomicNuclearProperties/HTML/liquid_argon.html
http://pdg.lbl.gov/2017/AtomicNuclearProperties/HTML/liquid_argon.html
https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html

19

10
 c

m

10 cm

Nu PDG: 12
True Nu Energy: 600 MeV

Electron dep Energy: 279 MeV
Proton dep Energy: 278 MeV

νe
p

e
Eνe=600 MeV

KEp = 279 MeV

KEe = 280 MeV

Simulation
Preliminary

(a)

10 cm

10
 c

m

Nu PDG: 14
True Nu Energy: 950 MeV

Muon dep Energy: 395 MeV
Proton dep Energy: 397 MeV

p

μ

Eνμ=936 MeV

KEp = 397 MeV

KEμ = 395 MeV

νμ

Simulation
Preliminary

Shower Pixel

Track Pixel

(b)

FIG. 23. Two examples illustrating the SSNet-image pixel labeling. The left panel shows a 1e1p type event from a e interaction.
The pixels corresponding to the proton are here here correctly classified as track by the SSNet. The pixels corresponding to
the electron are here mostly classified as shower by the SSNet, except for a small portion mistakenly labeled as track. The
right panel shows a 1µ1p type event from a νµ interaction. Here both the proton and muon tracks are correctly labeled as
track pixels. The muon decays into a Michel electron, classified as shower pixels. Dark blue pixels correspond to empty pixels,
without charge deposition.

20

10 cm

Computer Vision :
Vertex finding procedure carton

Simulation
Preliminary

FIG. 24. Cartoon of a vertex finding procedure with the OpenCV computer vision tool. For each candidate vertex position, a
circle is drawn centered at the vertex position, the tracks intersects the circle boundary at two points. The yellow lines link the
track-circle crossing points to the circle center. The angle between the two yellow lines is θ. The red lines represent the local
PCA approximation at the track-circle intersection. The angle between the red lines is φ. The gray dashed lines represent the
initial PCA lines. The circle is scanned along the initial straight line PCAs and the magnitude difference of θ and φ is recorded
per time tick. A local minimum in this magnitude difference that coincide across the three planes is a possible vertex.

1080 1090 1100 1110 1120 1130 1140 1150 1160

wire

6350

6400

6450

6500

6550

6600

6650

6700

tim
e

(ti
ck

s)

0

10

20

30

40

50

60

70

80

90

hImageMasked_00001_00058_51381_0009_1

5 cm

5 cm

MicroBoone
Simulation

Simulation
Preliminary

FIG. 25. Cartoon of a step in the track finding algorithm : a new point is searched for in the set of possible new points (white
triangles) randomly generated. The point that is 3D consistent with charge depositions on all planes and furthest away from
the last track point (red dots) is added to the track.

21

20 cm

40 cm

U plane

V plane

Y plane

Simulation
Preliminary

Simulation
Preliminary

Simulation
Preliminary

Simulation
Preliminary

Simulation
Preliminary

Simulation
Preliminary

Reconstructed:
Eν = 993.4 MeV

KEμ = 626.8 MeV

KEp = 220.6 MeV

20 cm

40 cm

Simulated:
Eν = 974.8 MeV

KEμ = 602.9 MeV

KEp = 225.9 MeV

p

μ

FIG. 26. Example of a reconstructed MC event : Left : ADC image of a 974.8 MeV simulated 1µ1p neutrino event producing
a 602.3 MeV muon and a 225.9 MeV proton. Right : Reconstructed tracks are overlaid on top of the ADC image. The event is
reconstructed as a 626.8 MeV muon (red) and a 220.6 MeV proton (black), for a reconstructed Evis

ν of 993.4 MeV.

	First Deep Learning based Event Reconstruction for Low-Energy Excess Searches with MicroBooNE 0.5cmMICROBOONE-NOTE-1042-PUB
	Abstract
	Introduction
	Data Pre-processing
	Using Images in the Reconstruction Package
	ADC-images
	SSNet-images
	Cosmic-tagged-images
	Dead-wire-images

	3D Vertex Finding and Particle Clustering
	Correlating Particles Across the Three Views
	3D Vertex studies
	Vertex Resolution
	Vertex Efficiency

	3D Track Reconstruction Algorithm
	3D track finding
	Finding the other tracks
	Self-diagnostic

	Observable estimations and performance evaluation
	Local ionization
	Angle Estimation
	Energy Estimation
	Individual tracks
	Neutrino energy estimation
	Spatial dependency of the efficiency

	Conclusions
	Acknowledgements
	References
	Appendix

