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Abstract

In this document, we describe a new reconstruction workflow developed for the MicroBooNE

experiment. It features the use of Deep Convolutional Neural Networks trained to recognize key

structures within the data sufficient for the 3D reconstruction of neutrino interactions within the

detector. As a test of the reconstruction utility, the products of the reconstruction workflow are

used to select inclusive charged-current (CC) νe and νµ interactions in both simulated and real

MicroBooNE data. In simulation, our νe and νµ selections achieve an efficiency of 57% and 68%,

respectively, with a purity of 91% and 96%, respectively. We find that these selections are competi-

tive with the inclusive selections used for the most recent MicroBooNE LEE searches. In particular,

the CC-νe inclusive selection efficiency improves by over 20% while also improving sample purity.

As a first step in quantifying potential bias, the data and Monte Carlo expectations are compared

for both selections using the MicroBooNE open data. Within statistical and systematic uncertain-

ties, both the electron and muon CC-inclusive event samples agree. A comparison of the real data

events chosen by our work and another reconstruction framework shows that the two analyses each

identify a sizeable fraction of events the other does not. This suggests that future analyses inte-

grating the strengths of each could lead to combined gains. This work demonstrates, for the first

time on real LArTPC data, state-of-the-art neutrino interaction reconstruction centered around

deep learning algorithms.
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I. INTRODUCTION1

The liquid argon time projection chamber (LArTPC) is the detector technology of choice2

for several future and current neutrino experiments. Current experiments include Micro-3

BooNE [1], the Short Baseline Neutrino Detector [2], and ICARUS [3]. Future experiments4

notably include the Deep Underground Neutrino Experiment (DUNE) [4] an effort towards5

which several prototype LArTPCs [5] have been constructed. LArTPCs have now found6

their way into many experiments due to their combination of resolution and scalability.7

LArTPCs can track charged particle trajectories with millimeter-scale position resolution8

for detectors with target volumes into the tens of kilotons.9

The output of LArTPCs can be characterized as very image-like. The waveforms recorded10

from planes of sense wires can be naturally arranged to produce images of the ionization11

patterns left behind by charged particles traversing the detector. Image formats are also12

relevant for alternative readout designs for LArTPCs, such as those that directly measure13

the 2D location of ionization in order to naturally capture voxelized 3D trajectories [6]. The14

format of this spatial data has facilitated the application of newly developed machine learning15

techniques, in particular from the domain of computer vision, to the task of reconstructing16

the trajectories and particle interactions captured by LArTPCs. Early applications focused17

on the classification of either entire images cropped from the data or for individual pixels [7].18

Structures traditionally important in the reconstruction of interactions, such as the location19

of neutrino vertices have been searched for. High-level, more abstract quantities such as20

neutrino interaction flavor [8], the energy of electromagnetic (EM) showers [9], and the21

neutrino energy [10] have been targets of ML algorithms. While these applications were on22

2D image data, there has been much progress in developing a full reconstruction chain for23

3D voxelized data.24

A fully end-to-end machine learning workflow outputs pixel-wise particle classification,25

the location of key points on particle trajectories, particle clusters, and assembled neutrino26

interactions into a fully-differentiable workflow [11]. The application of ML to reconstruc-27

tion has indeed seen rapid progress in the past several years. However, demonstrations of28

these ML-based tools in the context of analyses of real LArTPC data are only starting to29

be realized. One such analysis centered around a CNN performing pixel-wise particle-type30

classification [12, 13] which was used as a central input for the targeted exclusive selection31
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of one-lepton and one-proton final state interactions [14]. This analysis was part of Micro-32

BooNE’s search for an excess of low-energy electron neutrino interactions [15], conducted to33

investigate the reported event excess observed by the MiniBooNE experiment [16].34

This document provides a description of a new “DLGen2” reconstruction and applies it to35

the selection of inclusive νeCC and νµCC interactions in MicroBooNE. Unlike the previous36

MicroBooNE DL-based analysis, this iteration has aimed for the general reconstruction of37

all charged particle trajectories coming from neutrino interactions. An overall evaluation38

and demonstration of the reconstruction is conducted through the execution of the selection39

on the MicroBooNE open neutrino data set. We find that the efficiencies for this analysis40

are competitive with the highest-efficiency search previously published by MicroBooNE [17],41

which utilizes the Wire-Cell reconstruction [17–19]. Furthermore, the inspection of events42

selected by our reconstruction finds unique events not found by the analysis of Ref. [17].43

II. A CNN-BASED NEUTRINO RECONSTRUCTION FOR LARTPCS44

A. Overview of the Reconstruction45

The reconstruction utilizes convolutional neural networks to enable both 3D energy de-46

posit reconstruction and perform particle ID on 2D images. The approach taken makes use47

of the different advantages inherent in the 2D image and 3D point cloud representations.48

We start the description of the reconstruction chain with a brief overview of the major49

components of the reconstruction, which are illustrated in figure 1. Later sections then will50

describe the algorithms used in each component in more detail.51

The input to the reconstruction is a set of three 2D images, one for each of the wire-52

planes installed inside the MicroBooNE liquid argon TPC (LArTPC) detector [1]. The53

waveforms arranged in these images are the output of the first pre-processing stage applied54

to the raw waveforms. This stage includes the removal of coherent noise seen in sets of55

neighboring channels [20]. It also reconstructs the original space charge distribution from56

the measurements on wires by reverting the detector response (e.g., electronic response and57

field response) and sparsifying the input images. We call this process “Signal Processing.”58

For more details on the pre-processing stage see Refs. [21, 22].59

The image set is then provided to two convolutional neural networks (CNN). The first60
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Figure 1: Overview of the reconstruction workflow. The wireplane images and optical
information are passed into several components to produce labeled spacepoints
reconstructing the location of ionization left behind by charged particles traversing the
LArTPC. The labels associated to each spacepoint include particle type and a tag
estimating if a given spacepoint is from beam-related or cosmic-ray particles. These points
are then clustered into candidate particle trajectories by a set of reconstruction algorithms.
A CNN is used to provide a particle-type label for each trajectory. The final output of the
workflow are candidate neutrino interactions formed by associating one or more particle
clusters to neutrino vertex candidates.

CNN acts on each wire plane image separately and is responsible for labeling each pixel61

in the image according to two broad particle categories, split by the spatial pattern of62

ionization produced. The first type is “track”-like trajectories coming from particles such63

as muons, charged pions, and protons. The second type is “shower”-trajectories produced64

by electromagnetic cascades initiated by electrons or photons interacting in the detector.65

This pixel labeling CNN is referred to as “SSNet” for the semantic-segmentation network66

and was used in the first MicroBooNE DL analysis. The details of SSNet can be found in67

Ref. [13].68

A second, new CNN is applied to the set of three 2D images collectively and is referred69

to as the “LArMatch” network. The network produces two outputs. The first is a set of70

candidate 3D spacepoints which represent the location of energy depositions consistent with71

input images. The second product is a set of scores for six different classes of “keypoints.”72

Keypoints are useful locations at the start or end of tracks and showers, which, if known, can73

greatly simplify the algorithms required to help with clustering and the formation of neutrino74
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interaction candidates. The keypoint classes consist of 1) potential neutrino interaction75

vertices, 2) the start of track-like particles, 3) the end of track-like particles, 4) start points76

of EM showers excluding those from delta rays and muon decay, (5) the start points of delta77

ray showers, and 6) the start point of showers from muon decay.78

The input images also go through a reconstruction workflow separate from the one de-79

scribed here. This workflow, referred to as the “Wire-Cell” reconstruction [18], builds space-80

points, does clustering, and matches clusters of charge to pulses of light seen in the optical81

detectors [19]. The workflow uses many non-ML approaches and features the application82

of compressed sensing. What we utilize in our reconstruction workflow is the association of83

charge clusters to pulses of light either inside or outside the neutrino beam window. This84

information is used to provide a tag for the spacepoints made by the LArMatch network, as85

either in-time or out-of-time with the neutrino beam.86

At this point in the reconstruction, we have a set of spacepoints with various tags deriving87

from pixel-based labels along with a collection of keypoints. The next step in the workflow is88

to reconstruct 3D spacepoints, which are then clustered into subclusters covering individual89

particle trajectories. The purpose of starting with subclusters is to emphasize the purity90

of the clustering over completeness. Here the purity refers to the largest fraction of points91

whose ground truth label is associated to the end of the event. A pure cluster would contain92

spacepoints associated to only one particle. The completeness measures the fraction of93

possible pixels or spacepoints in the cluster.94

The 3D clustering algorithm implements the commonly used Density-Based Scan (DB-95

Scan) algorithm which uses the distances between k-nearest neighbors. What allows for this96

simple clustering routine is the many tags coming from LArMatch, SSNet, and the Wire-97

Cell in-time/out-of-time algorithm. These labels are used to partition the spacepoints before98

clustering, helping to reduce overclustering where spacepoints from two different particle tra-99

jectories are included into one cluster. For example, the LArMatch track and shower start100

keypoints are used to temporarily remove nearby spacepoints in order to prevent spacepoints101

from particles coming out of a common interaction vertex from being grouped together.102

After the subclustering step, non-ML algorithms are then used to combine the subclusters103

to form sets of spacepoints intended to represent the ionization produced by a single particle.104

These algorithms make use of the LArMatch ouputs for track endpoints and shower starts105

to seed the particle-building algorithms.106
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After this clustering stage is complete, the reconstruction has formed candidate particle107

trajectories. The following stage forms neutrino interaction candidates by associating pri-108

mary particle trajectories to interaction vertices. Secondary trajectories are also associated109

to interactions by looking for trajectories that seem to emerge from previously included tra-110

jectories. Cosmic muon trajectories are also formed by using track start and end keypoints111

to seed the track-building algorithm applied to only out-of-time subclusters. Neutrino and112

cosmic muon candidates are the core outputs of the 3D reconstruction workflow.113

For the individual neutrino interactions, further analyses are performed. Another CNN,114

referred to as “LArPID”, assigns particle identification scores to individual particle trajecto-115

ries. This LArPID network acts on two sets of images for a given individual particle cluster.116

The first set of images are sub-images formed by cropping around the cluster’s projected117

position on each wire plane image. These images include values for only those pixels at118

the projected locations of spacepoints. The second set of images provided to LArPID is a119

set of “context” images which use the same cropped location but include more pixels, only120

masking out pixels with an out-of-time tag (those likely not produced by interactions asso-121

ciated with the beam). The purpose is to provide LArPID with both a given cluster’s pixels122

and information pertaining to the entire interaction. We believe (see section II I 5) that the123

context images are critical in maximizing the particle ID accuracy of LArPID. The context124

images provide information the network can use to better ID the cluster. The context im-125

ages also provide the means to overcome clustering errors from the 3D spacepoint algorithms126

by providing information that might have been lost during clustering but is still present in127

the images around the location of the clusters. The primary output of LArPID is particle128

class scores for five particles: muon, charged pion, proton, electron, and photon. Particles129

and their anti-particles are combined into the same class. LArPID also provides auxiliary130

outputs in order to provide the option to make data selection cuts based on estimates of131

the cluster reconstruction quality and as to whether the particle in question is a primary132

particle emerging from a neutrino interaction vertex or a secondary particle descended from133

the interactions of the primary particles.134

The final outputs provided by the reconstruction are collections of candidate neutrino135

interactions and cosmic muons. For each neutrino candidate, each prong (reconstructed136

track or shower cluster) is provided a particle ID score from LArPID. Using this network’s137

ID, the energy and 3-momentum are estimated for each particle. The kinematics estimator138
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for muons, protons, and charged pions is based on the visible tracklength and uses the139

relationship between particle energy and the estimated length of fully ranged-out particles.1140

The energy estimator for the electromagnetic showers uses calorimetry based on charge.141

Additional network outputs related to keypoint scores and LArPID estimates are also passed142

along as outputs. The information for candidate neutrino interactions and their constituents143

can then be used to develop physics analyses.144

In the rest of this section, we provide more details for a subset of the components dis-145

cussed above. We do not include discussions of the image pre-processing algorithms, the146

in-time/out-of-time Wire-Cell tagger, and the SSNet CNN since their details can be found147

in the indicated references. For each component described, we focus on outlining the core148

approach of the algorithms, reference previous related work, and document key heuristics in149

tuning their behaviors.150

1. Detector coordinate system and Data set terminology151

We will often visualize the outputs of the reconstruction or define performance metrics152

assuming a specific 3D coordinate system. For the basis vectors, the positive x̂-direction153

runs in the direction of the anode to the cathode and points in the direction opposite to the154

drift of ionization electrons towards the anode. The positive ẑ-direction runs in the same155

direction of the neutrino beam. The positive ŷ-direction points upward to the sky. The156

origin of the coordinate system is defined at the boundary of the TPC where z = 0 is the157

side closest to the source of the beam, i.e. upstream, x = 0 is at the induction plane closest158

to the drift volume, and y = 0 is located at the midpoint of the vertical TPC dimension.159

The MicroBooNE TPC is a rectangle whose lengths are (256 cm, 233 cm, and 1036 cm)160

along the (x, y, z) axes, respectively.161

Another important definition is what constitutes an “event”. The values specified here162

are particular to the MicroBooNE experiment. However, the overall data schema will be163

similar for other LArTPCs utilizing sense-wires. Each event includes a set of waveforms164

from each of the three wire planes that are arranged in a 2D array to make three wire plane165

images, which we will refer to as “TPC images” or simple “images.” The three wire planes166

of the MicroBooNE detector – from closest to the TPC drift region to the furthest – are167

1 This estimate is applied to tracks regardless of whether they range out inside or exit the detector. A more

accurate estimate for exiting tracks will be the subject of future work.
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the first induction plane, the second induction plane, and the collection plane. They are168

so-named by the process with which ionization produces a current signal within the sense169

wires. The three wire planes are given a label, ’U’, ’V’, and ’Y’, respectively. Every event170

will have exactly one TPC image from each of the three planes.171

Each of the waveforms that makes up the images in an event consists of a time series172

of 9600 voltage measurements, or samples, recorded every 0.5 microseconds. The primary173

DAQ system for the MicroBooNE detector must be externally triggered (in other words174

instructed) to capture a synchronous set of waveforms for all channels. The two trigger175

types relevant for this work include (1) a signal synchronized with a firing of the neutrino176

beam, typically referred to as a “spill” (which references the release of a bunch of protons177

from the accelerator into a carbon target), and (2) a trigger signal produced by a signal178

generator programmed to fire at regular intervals in a time window between beam spills.179

The data recorded using the latter, non-beam spill, triggers are referred to as the “externally180

triggered” or EXT data set. The MicroBooNE detector records waveforms in sync with the181

Booster Neutrino Beam (BNB) produced by Fermi National Laboratory, and the data set182

recorded in coincident with the firing of this beam is referred to as the “BNB” data. Later183

in the sections demonstrating the performance of the reconstruction workflow through its184

use in a neutrino event selection, only data from the BNB and EXT data sets are used.185

B. LArMatch: 3D spacepoints and keypoints generation186

The purpose of the LArMatch network, illustrated in figure 2, is to use the TPC wire plane187

images to infer information related to the 3D location of ionization made by charged particle188

trajectories. Inferring the true location of such ionization is not trivial as this essentially189

requires inverting a tomographic projection, which by its nature will be an under-specified190

problem due to the information lost during the projection operation. To make this difficulty191

more concrete, we can consider trying to infer the location of energy depositions coming from192

a uniform line of ionization where the line is parallel to the wire readout planes. Figure 3193

provides an illustration showing the signal that would be seen in the wire plane images,194

which is simply a line of uniform intensity across some set of wires all occurring at the same195

time (i.e. region of TPC samples). A naive approach would be to ask “what is the set196

of spacepoints that is consistent with producing a wire signal in all three planes?”. This197
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Figure 2: LArMatch network schematic. First, a U-Net CNN with residual convolutions
takes as input three TPC images. For each input pixel, the CNN outputs a
(16-dimensional) vector whose purpose is to represent the relevant patterns around a given
pixel. Next, a non-ML algorithm proposes candidate spacepoints by forming all possible
locations consistent with the charge deposition pattern in the images. The location of each
proposed spacepoint is projected into the wire plane images in order to associate it a pixel
from each wire plane. A (48-dimensional) feature vector for each spacepoint is made by
concatenating the feature vectors belonging to the associated pixels. Three sets of
multi-layer perceptrons (MLPs) then map the spacepoint vector to three types of outputs.
One output is the score determining if a proposed spacepoint is located where a true
energy deposition occurred. The second is a score for five particle types. The other output
is a score indicating the location of several types of keypoints.

defines a 2D region of possible spacepoints, indicated by the purple region in the bottom198

illustration of Figure 3. The true locations of ionization would occur along a line within this199

region, indicated by the dashed line in the figure. One can select a subset of spacepoints in200

this region by utilizing some physical priors. If one assumes prior knowledge that (1) the201

true trajectory comes from a line segment and (2) the ends of the line must be consistent202

across the planes, then the set of possible spacepoints reduces to the correct region around203

the true path of ionization, as indicated by the yellow regions in the illustration of Figure 3.204

Another important refinement is to enforce some consistency in the signal intensity between205

the planes. In our example, one can use what in principle should be differences between the206

planes for the intensity per wire due to the different projected lengths of the ionization path207

onto the region around each wire. One can also impose a regularizing constraint such as208

biasing towards solutions that minimizes the number of spacepoints, which in this example209
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Figure 3: Example illustration of how inferring the 3D location of ionization can be an
under-specified problem. We assume a line of uniformly distributed ionization occurs
within the TPC and that the line is parallel to the wire planes. In this case, the wire plane
images (top row) will contain a line of signal (cyan) occurring at the same time. Using
only the knowledge of which wires on the planes see a signal, there is a 2D region in the
TPC of possible spacepoints that are consistent with the wire plane signals (shown in
purple). Only by also assuming a line shape and testing for consistency of the line length
across planes can one determine the true region of ionization (shown in yellow) that
corresponds to the true path.

can be seen to have a similar effect to having a line-like prior. These two latter approaches210

are a core part of the approach employed by the Wire-Cell reconstruction framework [18].211

What this example is meant to illustrate is the type of prior information or strategies needed212

to pick out the true points of ionization. While this example is the worst-case scenario for213

simple line trajectories, for LArTPC wire planes on the surface or in regions with many214

particles emerging from a neutrino interaction other degeneracies will arise.215216

The motivation for the LArMatch network is to complement charge consistency and reg-217

ularization by using machine learning to find additional features to match across the planes218

which improves the identification of true ionization points. One can imagine separating true219

3D energy depositions from false ones by learning to “match” local energy deposition pat-220

terns in one plane to another. These patterns must follow coherently from the underlying221

3D patterns of ionization. The algorithm thus proceeds in two steps. The first is to use a222

simple, deterministic algorithm to propose a large set of possible 3-wire intersections that223

might correspond to the location of real energy depositions in the detector. Next, a convo-224

lutional neural network (CNN) is trained to identify which 3-wire intersections are real or225
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false. We use what is known as a ‘U-Net’ for the CNN architecture. A U-Net maps the input226

images to a set of latent vectors at each pixel whose purpose is to summarize the relevant227

information in the neighborhood of the pixel. For a given 3D spacepoint, we project its228

location onto each wire plane and associate a pixel from each. We then concatenate the229

feature vectors from each pixel and pass them to a multi-layer perceptron which outputs a230

score indicating if the spacepoint is real or false. The feature vectors are also used by other231

MLP heads to produce additional information. In total, each feature vector is mapped to232

three outputs: (1) a score indicating if the spacepoint is true or false, (2) a set of scores233

classifying the spacepoint as one of five particle types, and (3) a set of scores related to how234

far away the point is from five types of keypoints. In the following sections, we first describe235

the algorithm that produces the spacepoint proposals from the wire plane images. We then236

provide details on the image-to-feature vector U-Net. Finally, we discuss the three different237

output heads.238

1. Proposal of 3-wire intersections, or “triplets”239

The first step to the LArMatch approach is to generate spacepoint candidates simply240

based on minimal geometric plausibility. Initial spacepoints represent the location of 3-wire241

intersections for wires with an above threshold signal coincident in time. We represent these242

wire combinations as a “triplet” of integers whose components contain the index associated243

with wires from each of the three wire planes. When the wire plane data is represented as244

an image, the triplet refers to the tuple of column indices for the three wire plane images. In245

order to not miss spacepoints that project onto non-responsive wires, the wire combinations246

can include one wire which has been tagged as non-responsive. About 10% of the sense wires247

in the MicroBooNE detector are classified as non-responsive. We do not try to make up for248

missing spacepoints due to below threshold wire signals caused by ionization patterns that249

cause destructive interference on the induction wires. These are associated with ionization250

patterns where local segments are perpendicular to the wire planes. False positive and false251

negative errors can also be induced by the presence of noise features on the wires.252

We form a set of candidate triplets for each time tick (represented by a row in the 2D253

wire-plane images) in the wire plane signals. The three column indices and row index specify254

the projected pixel locations in the three wire planes. This information also specifies a 3D255
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location determined by (1) the location of the 3-wire intersection and (2) knowledge of256

which image row represents the time coincident with the beam trigger combined with a drift257

velocity assuming a perfectly uniform drift field.258

The proposed spacepoints for an example simulated MicroBooNE event are shown in259

Figure 4. Metadata, which captures the “truth” about the particle trajectories present in260

each event, is saved during the simulation and used to create the ground truth labels for the261

LArMatch network. This includes both a list of charged particle trajectories passing through262

the TPC and the location of energy deposited by the particles. To save disk space, much of263

this information is projected into an 2D array with the same dimensions as the wire plane264

images, thereby facilitating the ability to determine the particle type or individual trajectory265

ID that deposited the most ionization observed at a given 2D pixel. In the simulation, the266

locations where energy was deposited by a particle is stored. For each pixel in the wire plane267

image, we assign to it the largest energy deposition that contributed to the value in the pixel.268

We then project this position into the other wire planes. The pixels on the other wire planes269

then are used to calculate the shift in the number of columns between the pixels on the270

two wire planes. In order to recover the YZ location of the largest energy deposit cluster271

that contributed to the pixel in the starting plane, one calculates the 2D intersection of the272

two wires from the different planes. The distance of the energy deposit from the wire plane273

can be calculated from the time relative to the event trigger and the drift velocity. Given274

that the wire planes are a tomographic projection of the 3D space points, this method of275

saving the 3D locations does not allow for perfect inference. However, we find the accuracy276

is sufficient to construct the ground truth for the LArMatch network, while reducing the277

amount of data to be saved. For future work, it would be worth exploring a better method278

of compressing the 3D energy deposition information that is not inherently lossy.279

In figure 4, the proposed spacepoints for one event are shown along with the ground280

truth ’true’ or ’ghost’ labels built from the simulation metadata. Spacepoints near a true281

location of ionization are given the ‘true” ground truth label shown in red. The rest of the282

spacepoint proposals are given the ‘false” ground truth label shown in blue. We highlight283

two regions of this figure. The first is the volume between z=[600 cm,800 cm]. Here, many284

short line-like regions of false spacepoints are seen. This is due to a fairly large region of285

unresponsive wires on one of the wire planes (the ”Y” collection plane). In these regions, the286

requirement to propose a spacepoint is relaxed from requiring ionization to be observed on287
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Figure 4: Initial spacepoint candidates for an example simulated MicroBooNE event. The
“true” spacepoints located near regions of ionization are colored in red. The “false” or
“ghost” spacepoints that are not near ionization are colored in blue.

only two (as opposed to all three) wire plane images. We make this accommodation with the288

aim of minimizing the amount of missing ionization at the cost of potentially accepting more289

false positives. The idea will be to use a downstream algorithm, specifically a particle-level290

CNN, to correct for false spacepoints or clustering mistake. The other region to point out in291

Figure 4 is the relatively large region of false (i.e. blue points) surrounding one muon track292

between z=[400 cm, 600 cm]. This is where a portion of a cosmic muon is parallel to the293

wire planes, similar to the illustration discussed earlier.294

2. Feature Generating U-Net295

The core part of the LArMatch network is the U-Net [23] CNN mapping images to pixel-296

wise feature vectors. We use residual convolutions [24] over standard convolutions. There are297

a total of six convolutional layers including five downsampling layers, each time with stride298

two. When normalization layers are used, we use instance normalization [25]. We upsample299

on the decoder part of the network with convolution-transpose operations. Because the wire300

plane images are sparse, i.e. most pixels have a value very nearly zero, the network uses301

sparse-submanifold convolutions [26] as implemented by the MinkowskiEngine library [27].302

The U-Net takes in a sparse tensor representation of a single wire plane image at a time303
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and is applied to each wire plane, separately. In other words, the input of the U-Net is a304

sparse tensor, s, which consists of a list of N pixels, which is a subset of all the pixels in the305

image. To be included into the sparse tensor, a pixel had to pass two criteria. One was that306

the pixel had a value above some threshold value. We used a threshold of ≥ 10.0, or what307

is about a quarter of the average pixel value for minimum ionization sections from cosmic308

muon tracks. The second criterion is that a pixel, with a below threshold value, was from a309

non-responsive wire while also being the projected location of a proposed spacepoint. The310

sparse image tensor, s, is represented through a pair of tensors. The first is a coordinate311

tensor, c ∈ WN×2, which contains the indices of the above threshold pixels. The second is312

a feature tensor, f ∈ RN×1, containing the associated pixel values. The U-Net, therefore,313

maps s = (c, f) to N 16-dimensional feature vectors, v ∈ RN×16.314

3. Spacepoint real/ghost classifier315

A 2-layer MLP is used to classify each proposed spacepoint as either real or ghost. This316

classifier takes in the concatenated 48-dim feature vector, v⃗, formed from the individual 16-d317

feature vectors from the project pixels from each plane. The MLP has two hidden layers,318

each with 32-features, and outputs both a real and ghost class score. A softmax function319

normalizes the sum of these scores to 1.0. We use the normalized score for being a true320

spacepoint, p(v⃗), for classifying proposed spacepoints.321

We train the network to optimize this prediction using a focal loss [28] objective. We also322

weight each spacepoint based on the relative total number of ground truth-labeled real and323

ghost points. This weighting is used to mitigate bias that might favor true negative predic-324

tions coming from the higher frequency of ghost spacepoints compared to real spacepoints.325

Our training objective is326

min
θ

Lghost = min
θ

[
Nb∑
b

[ Nit,b∑
it

wb,t log(pθ(vi,t))(1− pθ(vi,t))
γ+

Nif ,b∑
if

wb,f log(1− pθ(vi,f ))(pθ(vi,f ))
γ

 .

(1)

We optimize the objective using AdamW, an implementation of stochastic gradient descent327
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with features such as adaptive gradient normalization and momentum. We train our models328

with randomly sampled batches of data. The parameters of both the UNet and the MLP329

heads producing the LArMatch outputs are learned simultaneously in one combined training330

procedure. Within a batch of Nb training samples, the b-th sample consists of Nb feature331

vectors, vi produced by the UNet for all Nb candidate spacepoints. We use the simulation332

meta-data to produce ground truth labels for the set of vectors, vi. The subset of Nb,t333

’real’ or ’true’ ground truth-labeled vectors is vi,t; the subset of Nb,f ’ghost’ or ’false’ labeled334

vectors is vi,f (with Nb = Nb,t + Nb,f ). The likelihood estimate for being a real point is335

pθ(vi) and is approximated by the output of the true/ghost MLP, parameterized by θ. The336

(1−pθ(vi,t))
γ and (pθ(vi,f ))

γ are the focal-loss factors. As pθ(v) approaches the ground truth337

value (1.0 for real points, 0.0 for ghost points), the focal loss factors increasingly down-weight338

these examples with the γ meta-parameter controlling how quickly the downweighting occurs339

with increased confidence. Conversely, the spacepoints whose classification is incorrect will340

contribute more to the update of the model parameters. In effect, the focal loss is intended to341

nudge the optimization towards improving “harder” examples over increasing the confidence342

for easy examples.343

4. Spacepoint Keypoint score344

The LArMatch network also is tasked with providing the outputs to identify locations of345

ionization that can be useful for later 3D trajectory reconstruction. We defined six classes346

of “keypoints”: (1) a neutrino interaction vertex, (2) the start of a track-like trajectory347

(defined as belonging to a muon, proton, charged pion, and other heavy mesons), (3) the348

end of a track-like trajectory, (4) the start of EM shower not produced by processes in the349

following types, (5) the start of EM showers produced by the decay of a muon, and (6) the350

start of EM showers form delta rays (typically radiating from energetic muon tracks).351

The way the location of possible keypoints is represented in the output of the network352

is through a score made for each spacepoint. The score ranges from 0 to 1.0, with scores353

inversely proportional to the distance to a keypoint. The network is trained to reproduce a354

score distribution that follows a Gaussian with a uniform, uncorrelated variance. In other355

words, the network is asked to produce a heat map near keypoints with the hotspots having356

a set shape. A post-processing step can then be used to identify hotspots and use the357
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spatial score distribution to fit to the precise keypoint location. The ground truth-score is358

calculated using meta-data from the simulation which retains the creation point of charged359

track-like particles and the earliest location of ionization within the TPC of an EM shower.360

All particles whose meta-data information was used to define EM shower keypoints were361

required to have at least one wireplane image with 20 or more pixels whose signal was362

attributed to its ionization.363

A 2-layer MLP, sθ is used to map each spacepoint’s feature vector, v⃗, to a vector, k⃗ ∈ R6,364

whose components are the scores of each keypoint class. The value of each component is365

independently kept within the range of [0, 1] by applying a sigmoid-function element-wise.366

This bounded output is then compared to the ground truth scores for each keypoint class.367

Both the dedicated keypoint MLP and the UNet parameters are optimized to minimize368

the keypoint training objective, Lkeypoint, given by369

Lkeypoint =
1

Nb

Nb∑
b

[
1

Nc

Nc∑
c

[
Nb,t∑
i

wb,c,t(ŝi,c,b,t − sθ(v⃗i,b,t))
2+

Nb,f∑
j

wb,c,f (ŝj,c,b,f − sθ(v⃗j,b,f ))
2

 .

(2)

For the above equation, the sum over Nb is over the number of examples in each training370

batch. Each example consists of proposals from one set of wire plane images from one TPC371

readout event. The sum over Nc is over the six different keypoint classes. Because most372

spacepoint proposals are unlikely to be near a true keypoint, to aid training, we use weights373

to balance the contribution of examples near true keypoints, for which the MLP needs to374

output a score, and those far away from true keypoints, for which the MLP only needs to375

output zero. Therefore, for each class we split the total number of spacepoint proposals in376

the b-th example, Nb, into “true example” points within 10 cm of a true keypoint and “false377

example” points which are not. Thus, in the above equation, the sum over Nb,c,t is for the378

true example spacepoints for class c, while the sum over Nb,c,f for the false examples for379

class c within the b-th example of the batch. Regardless of the class, the number of true and380

false examples total to the same number of spacepoint proposals, i.e. Nb,c,t + Nb,c,f . The381

true example weight for class c, wb,c,t, is set to the ratio of the total number of spacepoints,382

Nb,c,t + Nb,c,f , over the number of true examples in the b-th training example. Similarly,383
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the weight, wb,c,t, is the ratio of the total number of spacepoints over the number of false384

examples in the b-th training example. For each true (false) spacepoint, the contribution385

to the loss is the weighted squared-difference between the keypoint MLP output, sθ(v⃗i,b,t)386

(sθ(v⃗j,b,f ), which is a function of the feature vector, v⃗i,b,t (v⃗j,b,f ), of the i-th (j-th) spacepoint387

in the b-th training example. The ground truth score for a given spacepoint is labeled by388

ŝi,c,b,t and ŝi,c,b,f .389

5. Weighting the Multi-objective Loss390

We use a dynamic weighting of the different task objectives when forming the final, overall391

loss function. This technique changes the relative weights of the tasks based on an estimate392

of the uncertainty. This method in effect aims to encourage parity in the contribution of the393

terms to the total loss throughout the training period. In our application, the total loss is394

Llarmatch = e−sghostLghost + e−skeypointLkeypoint + sghost + skeypoint. (3)

C. 3D Particle Trajectory Reconstruction395

The 3D reconstruction of individual particle trajectories is designed around the outputs396

produced by the LArMatch CNN, the SSNet CNN, and the Wire-Cell out-of-time tagger.397

The fundamental input to the reconstruction is the set of spacepoints produced by the398

LArMatch stage. The algorithms described below first create clusters belonging to individual399

particles. This is followed by building a representation of the trajectory. A line segment, fit400

to a cluster’s spacepoints, is used to represent track-like particles. A cone, whose axis is fit401

along an initial path of spacepoints, represents shower-inducing particles. These outputs are402

more easily achieved by the pattern recognition performed by the previous CNNs, alleviating403

the need to find the necessary patterns within the set of spacepoints, directly.404

The upstream outputs are first used to refine and partition the candidate spacepoints.405

First, the LArMatch real/ghost score is used to filter ghost points. A ’real’ spacepoint score406

threshold of 0.8 is applied to remove ghost points. This score value removes approximately407

90% of ghost points and keeps approximately 75% of true points. The cut value chosen favors408

background rejection in order to keep the typical run time of downstream algorithms between409
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10-20 seconds per event. Next, the Wire-Cell out-of-time/in-time label splits the spacepoints410

into two sets: ‘in-time’ and ‘cosmic’. Both of these sets are subdivided into track and shower411

hits using the scores from the 2D SSNet CNN. At this stage of the reconstruction, we have412

four buckets of spacepoints: in-time-track, in-time-shower, cosmic-track, and cosmic-shower.413

Because of spacepoint proposal’s very forgiving criteria, the density of points around the414

true trajectory can be high with many spacepoints providing redundant information. We415

apply a heuristic to remove points away from the core of the trajectory. For each plane, we416

only tag one spacepoint to keep per pixel, choosing the spacepoint with the largest LArMatch417

real/ghost score. The final set of spacepoints we keep are the union of all the spacepoints418

associated with pixels from each plane. This heuristic is applied to the in-time-track, in-time-419

shower, and cosmic-track spacepoint partitions. Figure 5 shows the fraction of space points420

that are within some distance of a true muon, charged pion, or proton trajectory within the421

TPC. The simulated data used to make the plot in this figure contained simulated cosmic422

particles (mostly muons) and neutrino interactions. About 90% of spacepoints are within 1423

cm of track-like trajectories.424

Figure 5: Fraction of spacepoints vs. distance from the ground truth trajectory of a true
muon, charged pion, or proton trajectory within the TPC.

425

426

D. Keypoint Generation427

The output of the LArMatch keypoint proposal CNN are pixel-wise scores. This infor-428

mation needs to be distilled into individual keypoint candidates. Ideally, the scores from429
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the network should be arranged spatially as spherical hotspots. We separate the hotspots430

by first retaining keypoints with a minimum score and then using density-based clustering431

algorithm, DBSCAN, to identify individual candidates. The location of a keypoint is taken432

to be the spacepoint within a cluster with the highest keypoint score. Spacepoints part of a433

reconstructed keypoint are tagged and removed from the original pool. The scores of points434

within the remaining pool are modified by using the set of newly created keypoint locations435

to subtract the expected score contributions (defined by a Gaussian function). The modified436

score is clamped to be zero or greater. This keypoint-finding procedure is applied twice, first437

with a high keypoint score threshold and again with a lower score threshold. This procedure438

is applied separately for each type of keypoint. As a result, a spacepoint can be a part439

of keypoint clusters for multiple classes. However, a spacepoint can only be part of one440

keypoint cluster within the same class.441

Keypoints from all six classes are searched for within the ’in-time’ spacepoint partition.442

Only track-start and track-end types are constructed from the ’out-of-time’ spacepoint par-443

tition. All of the above keypoints will be used by the next set of algorithms to seed the444

creation of particle clusters.445

In the future, keypoints with the remaining classes can be built using the out-of-time446

spacepoints. This could be used to reconstruct cosmogenic particle clusters, beyond those447

for cosmic muons, with the intended use of creating side-band datasets. For example, it448

might be useful to reconstruct out-of-time neutron-induced interactions. These could be449

identified by track-start keypoints or regions with high neutrino-like scores as they often450

mimic NC-like final states.451

E. Particle and Interaction Reconstruction with 3D Spacepoints452

Two different sets of algorithms are used to form track-like and shower-like clusters.453

However, both take the approach of trying to form pure sub-clusters and then using heuristics454

to stitch together the subclusters belonging to individual particles.455
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Figure 6: Schematics of the steps of the track reconstruction. (A) Spacepoints with
track-like and in-time labels are collected along with start and end keypoints (here a start
keypoint is shown in cyan; end keypoints are in magenta). (B) Spacepoints around certain
keypoints are removed from clustering. (C) Spacepoints are clustered and then broken into
straight pieces based on the convex hull around the points. (D) Clusters are represented as
a line segment with two ends. Line segments between end points within a certain distance
are formed. A graph is defined with nodes defined by the cluster end points and two types
of edges defined by the line segments within charge clusters (black solid lines) and those
between clusters (red dashed lines). (E) Track-start keypoints are used to seed a
depth-first graph traversal algorithm that proposes possible tracks. (F) Spacepoints are
assigned to nearby line-segments and together define a candidate particle track. In this
schematic, four candidates are proposed.

1. Forming track candidates456

For track-like particles, we form subclusters by looking for neighboring spacepoints ar-457

ranged in a straight line. We start by using DBScan to form clusters of neighboring space-458

points. To avoid clustering spacepoints from multiple particles, we apply several heuristics.459

The first is that we remove spacepoints within a 3 cm radius of reconstructed keypoints. This460

length is three times the DBScan maximum distance parameter of 1 cm in order to ensure461

points from different particles emerging from a vertex or secondary interaction point will not462

be clustered together. (A cartoon of this step is shown in Figure 6B). This is done to separate463

spacepoints coming from the locations of neutrino interactions, secondary interactions, or464

decay. The other heuristic aims to find locations of intersecting trajectories. The approach465

is to recognize ’vee’ patterns using the convex hull around the set of pixels corresponding466

to the projected spacepoint location on the wire planes. This reuses algorithms built for467
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the one 1-lepton-1-proton exclusive analysis in the previous MicroBooNE low-energy excess468

search [29]. We use convex hull defect points to identify intersecting trajectories and the469

location to split the clusters assuming either an ’X’- of ’V’-shaped 3D spatial pattern. (A470

cartoon of this step is shown in Figure 6C).471

We build individual particle tracks by chaining, end-to-end, the straight-line subclusters.472

We use a recursive depth-first graph traversal algorithm to build chains of subcluster seg-473

ments. This algorithm begins by defining a graph whose nodes are the collection of line474

segment endpoints. Two types of edges are defined between the nodes. The first edge type475

(A) connects endpoint nodes belonging to the same subcluster. The second edge type (B)476

connects endpoint nodes below some max distance. (A cartoon of this step is shown in477

Figure 6D with the A-type edges represented as solid black line segments and B-type edges478

as dashed red line segments.) Multiple B-type edges between the endpoints of two line479

segments can be formed.480

Once the graph is formed using all the subcluster line segments, a recursive graph traversal481

algorithm is used to build chains of line segments representing candidate track trajectories.482

The sub-set of endpoint nodes sufficiently close to designated keypoints serve as starting483

points. (A cartoon of this step is shown in Figure 6E.) Using depth-first recursion, a tree-484

structured subgraph for each seed node is built by traversing edges of alternating type,485

starting with A-type edges. Heuristics based on angles and distances between edges and486

segments were used to choose and prioritize B-type edges to include in the tree. For potential487

B-type edges less than 3 cm, the cosine between the track segments that this B-edge would488

connect is required to be greater than zero. For edge lengths between 3 to 10 cm, the cosine489

between track segments must be greater than 0.7. For lengths longer than 10 cm, the cosine490

must be greater than 0.9. We allow for such fairly large distances between track segments491

in order to cross regions of unresponsive wires that occur within the detector. These values492

were optimized to maximize the completeness of simulated cosmic muon tracks. To prevent493

loops, nodes can only be visited once.494

Paths within a tree subgraph that connect the root node to the leaf nodes represent495

candidate trajectories. Possible paths are selected using the heuristic that true trajectories496

run along regions of ionization. This is quantified by the fraction of the trajectory length497

that projects onto locations within the wire plane images that are near pixels with sufficient498

ionization. Paths satisfying this criterion are scored based on weighted sum of the total path499
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length, the trajectory fraction near ionization, whether the end of the path coincides with500

a track-end keypoint, and a measure of the overall trajectory straightness. Valid paths are501

then sorted by descending score.502

Candidate track particles are created from the set of paths, starting with the highest503

scoring. The ordered collection of line segments define the trajectory of the track. Track-504

like spacepoints close to the line segments form a cluster associated with the trajectory. Any505

remaining paths that fork from the current highest-scoring path are used to define secondary506

tracks that begin at the last common node. Once a track trajectory is created, any segments507

included in the path are forbidden to be reused. Any remaining path is removed if it includes508

any A-type edges corresponding to segments included in a track. Track creation continues509

with the remaining highest-scoring path and completes once the set of valid paths is empty.510

Candidate tracks are created in this way for all starting nodes. An individual subcluster511

line segment can be a part of multiple track candidates, as long as the tracks were created512

using different starting nodes. Once all candidate tracks have been formed for a given pool513

of track subclusters, refinements to the line segment trajectory are made for each track can-514

didate. The refinements consist of creating new points along the segmented line such that515

a chosen maximum distance occurs between points. The locations of the expanded set of516

points are iteratively perturbed using gradient descent in order to minimize squared-distance517

between projected wireplane positions and pixels with ionization. Once refinements of the518

line-segment trajectories are completed, 3D spacepoints are associated with each trajectory.519

First, spacepoints in the sub-clusters used to make the trajectory are added. Second, space-520

points close to keypoints, which were vetoed initially, are added to the trajectory. The521

collection of spacepoints along with the line segment trajectory represent the candidate par-522

ticle tracks. (The final track candidates in the diagram of Figure 6, defined with both a line523

segment trajectory and associated spacepoints, are shown in sub-figure F.)524

2. Forming shower candidates525

The approach taken for forming shower candidates is to assume that shower keypoints are526

located at the start of a shower and then to collect 3D spacepoints, tagged as shower-like by527

SSNet, belonging to the shower. Points are added to a candidate shower if they fall within528

a cylindrical region around the shower’s reconstructed direction. To determine the shower529

24



Figure 7: Schematic illustrating steps of the shower reconstruction. (A) Spacepoints with
shower-like and in-time labels are collected along with shower keypoints. The shower
points are colored orange. Shower keypoints are given random colors. (B) DBscan is used
to cluster the points based on neighbor distances. Found clusters are assigned a random
color and index. There are some points shown which did not have enough points to form a
cluster. (C) The first principal component direction and keypoint define the initial
direction of the shower. (D) A subset of points within each cluster near the keypoint is
used to define a shower trunk. (E) The trunk direction and keypoint defines a line.
Clusters close to this line are added to the shower candidate, defined by a keypoint, shower
trunk, and cluster of shower spacepoints.

direction, a shower “trunk” is defined as a line that running along the first 3-10 centimeters530

of ionization at the start of the shower.531

The shower reconstruction begins by gathering, as input, spacepoints that have been532

filtered to have (1) an SSNet shower score greater than 0.5, (2) a LArMatch ’true’ score of533

0.8 (the same threshold for accepting spacepoint candidates), and (3) to be associated with534

pixels that have not been tagged as being out-of-time with the beam, (in other words does535

not have a cosmic tag). The algorithm also requires a set of shower keypoints. In figure 7a,536

spacepoints satisfying the conditions are shown as orange circles. Different candidate shower537

keypoints are also shown in figure 7a in random colors, here blue, red, and magenta.538

Next, DBscan is used to build shower subclusters and is run with the following parameters:539

a maximum distance of 5.0 cm, minimum cluster size of 20, and max nearest neighbors of540

20. The somewhat higher minimum points to form a cluster is meant to reduce the number541
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of small disconnected shower fragments. In the illustration in figure 7b, three clusters are542

found are given a random color and index. Note the smaller fragments which do not form a543

cluster. The first principal component (PC) is then calculated for each cluster. To remove544

very short clusters, any cluster whose first PC length – measured by the maximum distance545

between pairs of points projected onto the first PC line – is shorter than 1 cm is rejected.546

In the illustration in figure 7c, examples of PC axes for each cluster is shown.547

Next, the shower keypoints are used to find a good shower “trunk.” For all keypoints548

within 10 cm of the axis-aligned bounding box of each shower cluster, a subset of cluster549

points within a certain radius of the keypoint are collected. For each subset of points, a550

first PC axis is found and defines the axis of the shower trunk. A subset of points is made551

three times for each keypoint and cluster pair, using a radius of 3 cm, 5 cm, and 10 cm. In552

all cases, the keypoint is required to be at most 1 cm from the nearest cluster spacepoint in553

order to be able to define a valid shower trunk. In studies of the dE/dx along the true initial554

direction of simulated electron showers, the energy loss per unit length was most separable555

between electrons and photons between 1 cm to 3 cm. The upper bound was interpreted556

to be approximately the length scale where some aspect of the shower’s cascade has begun,557

causing a widely varying dE/dx that differs from just ionization. Of the three candidate558

trunks, we choose the one to represent the cluster’s trunk based on which is the most line-559

like. This is quantified using the ratio between the second-to-first principal component of560

the cluster’s spacepoints.561

At this point in the shower reconstruction, each shower candidate includes the cluster562

points, a shower trunk, and the seeding shower keypoint. Figure 7d provides an example563

where a shower trunk has been found for each of the three clusters in the illustration. Note564

that a subset of points, marked with a darker color, are tagged as being part of the shower565

trunk, can fall within different radii of their respective keypoints.566

Finally, we attempt to add additional shower points to each candidate shower cluster.567

We do not add individual points, but instead test to see if we should add an entire cluster’s568

points to a shower candidate. For each shower candidate, we loop through all shower clusters569

and ask which fraction of the cluster’s points are within a volume around the line defined570

by the shower trunk’s direction and the position of the keypoint. The acceptance volume571

is split into two regions. The first volume is for points in the “forward direction” of the572

shower, which must be (1) within 5 cm of the trunk axis while (2) it’s projected distance573
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along the axis is less than 50 cm from the keypoint. The second volume is for points in the574

“backward direction” of the shower. These points must have as projected distance within575

3 cm of the keypoint and be within 3 cm of the trunk axis. This second volume is meant576

to help with cases where the shower keypoint is reconstructed a few centimeters into the577

trunk. If half of the points within the cluster falls within the volume defined by the shower578

candidate trunk, all of the spacepoints are added to the shower candidate. In our illustrative579

examples, figure 7e depicts successful tests to add a cluster of points to shower candidates580

1 and 3 as each have a cluster whose points are within some distance of the trunk’s line.581

Note that the shower cluster merging condition at this point of the reconstruction is rel-582

atively restrictive. We later use the neutrino vertex to help merge shower cluster candidates583

into bigger, more complete shower clusters. This cluster merging occurs when neutrino in-584

teraction candidates are being constructed. We start the process of building showers by585

tagging a subset of shower candidates found from the procedure above as “shower prong”586

candidates. These are intended to represent the beginning of a possibly larger shower emerg-587

ing from a neutrino interaction. Prongs are first identified based on how well they point588

back to the neutrino vertex. To qualify as a prong, the shortest distance between the line589

defined by a shower cluster’s trunk direction and the neutrino vertex (often described as590

the impact distance in other scattering contexts) is below 20 cm. The shower prongs that591

qualify are then sorted by those with the smallest distance to those with the largest. Then,592

beginning with the prong with the smallest distance, we then loop over all shower clusters593

and decide on merging each into the prong if a cluster falls within a cone defined by the594

prong. The cone is defined by an axis whose starting point and direction are defined by the595

prong’s trunk. Because the trunk is a line segment, the endpoint of the trunk closest to the596

neutrino vertex is designated as the tip of the cone. The trunk line segment is used to define597

the ray of the cone such that the direction of the ray is away from the neutrino vertex. The598

opening angle of the prong cone is 30 degrees. This is the angle of a right triangle whose599

height is approximately 2 Moliere radii (9.04 cm in liquid argon) and whose base is 50 cm600

(or about 3.5 radiation lengths) [30]. We add other ‘test’ shower clusters to the prong by601

determining if the test cluster falls within the prong’s cone. To determine this, we ask if the602

test cluster’s trunk endpoint closest to the neutrino vertex is within the 30-degree opening603

angle. We iteratively define a new prong and associate available shower clusters to it, all the604

while tagging clusters as unavailable and skipping them if they were used to define a prong605
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or were merged into a prong. In this way, we use the neutrino vertex to help sort the order606

of shower candidates and thus bias which ones should serve as the starting prongs on which607

to build.608

F. Interaction Candidate Formation609

The formation of neutrino interaction candidates begins with associating neutrino key-610

point candidates with track subcluster segments and shower-trunk candidates. The track611

subclusters derive from the in-time-track spacepoints. The shower subclusters and trunks are612

made from the in-time-shower spacepoints. Both types of subclusters are added as ’primary613

prongs’ based on the distance between (1) the vertex and the closest segment endpoint and614

(2) the neutrino keypoint and the prongs first principal component axis. The graph-based615

algorithm described above is used to build candidate tracks using only the neutrino keypoint616

as a seed. The cone-based procedure described above is used to construct shower candidates617

using the associated shower prongs. For any shower subclusters assigned to multiple shower618

candidates, we prevent over-counting of visible energy by forbidding subclusters from being619

added to multiple shower prongs in this context. The track and shower candidates created620

at this stage of interaction reconstruction are tagged as primary prongs. At this stage, we621

also correct for potential reconstruction errors due to small clusters of spacepoints being622

mislabeled as track-like by the SSNet CNN. One algorithm checks for such track-like clus-623

ters that might occur at the beginning of a shower. For each shower prong, a line between624

its start point and the vertex is defined. We then check for any track clusters with over 90%625

of its spacepoints within 3.5 cm of this line or within 2 cm of the shower’s trunk, for which626

the latter is defined by a line segment up to 10 cm long. We also check for short track-like627

subclusters that lie deeper within a shower, beyond the trunk. When such track clusters628

are detected, the track cluster is removed and its spacepoints are added to the shower’s629

spacepoint container.630

With the set of primary particles defined, the next step of the reconstruction is to add631

secondary particles to the candidate neutrino interaction. The search for secondaries starts632

by finding track and shower subclusters whose starting points are within 2 cm of any of the633

associated primary tracks or whose first principal component forms a line that approaches634

within 2 cm. For each secondary track prong, the graph-based track builder is used to635
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create track particles. Likewise, for each secondary shower prong, the cone-based shower636

building algorithm is used to construct a secondary shower particle. This secondary particle637

reconstruction continues to iterate until no additional track-like or shower-like subclusters638

are associated with the interaction.639

The construction of neutrino candidates concludes with routines to estimate the energy640

of tracks using range under the assumption of a few particle species. The initial direction641

of the track is also estimated. Calorimetric estimates of the total ionization are made by642

summing the pixel values of individual wire plane images. This leads to three plane-specific643

estimates for each shower. An initial integral-to-energy conversion is applied. Details for644

these energy estimates are in Section IIH.645

In addition to neutrino interactions, the reconstruction also builds cosmic muon tracks646

using the graph algorithm seeded by track-start and track-end keypoints. The tracks are647

made using clusters coming from the cosmic-track spacepoints.648

This interaction-building stage is the final step of the 3D spacepoint-based reconstruction.649

The neutrino interactions and their candidate primary and secondary particles are saved for650

analysis. The spacepoints and their associated scores are saved only for those assigned to a651

particle that is part of a neutrino candidate. These products will be used by the CNN-based652

particle ID to be described in later sections. The scores of the keypoints are also stored for653

selection and analysis purposes.654

G. Reconstruction Validation655

The algorithms described in the previous sections are able to efficiently reconstruct neu-656

trino interactions and final state particles. This section presents validation plots exploring657

vertex and prong reconstruction quality using a sample of MC neutrino interactions (overlaid658

over cosmic-ray background data) occurring inside the MicroBooNE fiducial volume (defined659

as 3cm from the edge of the space-charge-corrected TPC boundary as in [17]). The ability660

of our reconstruction outputs to select CC νµ and CC νe events with high efficiency and661

purity is explored in sections IIIA and III B. These metrics are defined by the fraction of662

selected events relative to all charged-current events whose vertex occurs within the fiducial663

volume.664
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1. Vertex Validation665

Figure 8a shows the efficiency of our neutrino vertex reconstruction as a function of666

simulated neutrino energy for CC νµ and CC νe interactions. Vertex efficiency is higher for667

CC νe events, but is high in both cases, rising above 80% by 0.5 - 0.6 GeV in neutrino energy668

and leveling off at around 85% - 90% above 1 GeV. Below 0.5 GeV, vertex reconstruction669

efficiency drops steeply (as expected), falling below 60% around 0.2 - 0.3 GeV. Figure 8b670

shows how accurate the vertex reconstruction is in cases where a candidate neutrino vertex671

is found. From this area normalized distribution of the distance between the reconstructed672

and true neutrino interaction vertex (for all MC neutrino interactions), we can see that the673

vast majority of reconstructed vertices are within 1cm of the true position. More specifically,674

68% of reconstructed vertices are within 9.2mm of the simulated interaction position. The675

spacing between wires is 3mm, so we can reconstruct vertices within within about three676

wires, which is quite close to the one-wire-limit on the accuracy of a perfect reconstruction.677

(a) (b)

Figure 8: (a): The fraction of MC νµCC and νeCC interactions occurring inside the
MicroBooNE fiducial volume in which a neutrino candidate vertex was reconstructed (as a
function of simulated neutrino energy). (b): The distance between the true and
reconstructed neutrino vertex for all MC neutrino interactions inside the MicroBooNE
fiducial volume.
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2. Prong Validation678

To determine the quality of reconstructed prongs, we select a sample of tracks and showers679

attached to reconstructed neutrino vertices fromMC neutrino interactions. Prongs are truth-680

matched to simulated particles from the interaction by projecting all of their spacepoints681

back into the 2D wire plane images and finding the simulated particle that deposits the682

most charge in associated 2D pixels. To allow for accurate truth-matching, we require683

that no more than 20% of the prong’s 2D pixel charge come from the overlaid cosmic-ray684

background data. For each prong, we calculate the reconstruction quality metrics of purity685

and completeness, where purity is defined as the fraction of the prong’s total 2D pixel charge686

that was produced by the truth-matched simulated particle, and completeness is defined as687

the fraction of the total 2D pixel charge deposited by the simulated particle that is included688

in the reconstructed prong.689

Figure 9 shows plots of purity vs. completeness for prongs that are truth-matched to690

simulated muons, charged pions, protons, electrons, and photons. The vast majority of691

reconstructed prongs occupy the high-purity, high-completeness upper-right corner of these692

plots, indicating a quality reconstruction. However, for protons and, to a greater extent,693

charged pions, there is a non-trivial population of prongs with high completeness but rela-694

tively low (roughly 40 - 70%) purity. This is largely due to the difficulty in separating out695

short tracks from the often dense clusters of charge surrounding the immediate vicinity of696

interaction vertices. Additionally, charged pions often decay, producing (through an inter-697

mediate muon) a small electron shower. In these cases, the electron shower and charged698

pion track are sometimes reconstructed as part of the same prong, contributing to the popu-699

lation of lower-purity pion prongs. There is also a non-trivial population of electron prongs700

with high purity, but low completeness. This is caused by either an early, spatially isolated701

branch of the electron shower getting reconstructed as a separate shower or by the pixels702

associated with a small stub of the trunk of the electron shower getting tagged as track703

pixels, causing that stub to get reconstructed as a separate track. However, in these cases,704

most of the electron shower is almost always reconstructed in a separate prong, and these705

occasional reconstruction issues can be overcome by identifying such prong fragments by706

estimating their purity and completeness with the LArPID network (discussed in section707

II I).708
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(a)

(b) (c)

(d) (e)

Figure 9: Purity vs. completeness for reconstructed prongs (from MC neutrino interactions
occurring inside the MicroBooNE fiducial volume) that are attached to neutrino candidate
vertices and truth-matched to simulated muons (a), charged pions (b), protons (c),
electrons (d), or photons (e).
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H. Energy Reconstruction709

To reconstruct the energy of tracks, we first use the LArPID network discussed in section710

II I to determine the particle type: tracks are classified as either muons, charged pions,711

or protons based on which of those three LArPID particle scores is highest. Knowing the712

particle type, we can then use the track length and fits to the kinetic energy vs. range713

curves of these three particles to determine a kinetic energy for the track. These fits are714

shown in figure 10 overlaid over a scatter plot of kinetic energy vs. length for simulated715

muon, charged pion, and proton trajectories (from MicroBooNE MC νµCC interactions)716

that begin and end at least 10cm from the edge of the MicroBooNE active volume. The fit717

for muons provides accurate results; however, charged pions and protons often interact before718

ranging out, causing a spread above the fit line for particles in which our range calculation719

underestimates energy. This range calculation will also of course underestimate the energy720

of track-like particles that exit the detector. These shortcomings will be addressed in future721

studies.722

Shower energy is reconstructed from the visible charge observed in the collection plane,723

Qsh, which is linearly related to shower energy. As discussed in more detail in [31], a fit to724

shower energy vs. Qsh yields the conversion:725

E[MeV ] = (0.0126± 0.0001)Qsh, (4)

where the error is from statistical uncertainty in simulated events used in the fit.726

Our neutrino energy estimate is then simply calculated as the sum of the reconstructed727

track and shower energies for all prongs attached to the reconstructed neutrino interaction728

vertex. This is a measure of visible energy, not a sophisticated neutrino energy reconstruc-729

tion. A more accurate energy reconstruction that addresses the limitations of the track730

energy estimate and includes more sophisticated techniques will be introduced in future731

works.732

The accuracy of this visible neutrino energy estimate is illustrated in figure 11, which733

shows reconstructed vs. true neutrino energy for a sample of MC νeCC and νµCC events.734

Only simulated interactions in which all neutrino final state particles are contained inside735

the detector and that were reasonably well reconstructed (a neutrino vertex must have been736

found with an attached prong that contains at least 60% of the primary lepton’s deposited737
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(a)

(b) (c)

Figure 10: Kinetic energy vs. range for simulated muons (a), charged pions (b), and
protons (c) that begin and end in the detector fiducial volume and were produced in MC
νµCC interactions. The fits used in track energy reconstruction are shown in blue.

charge) are included in these plots2. While the majority of events’ reconstructed energy falls738

below the overlaid one-to-one line and underestimates the true neutrino energy (as expected739

for this visible energy calculation), there is a reasonably strong linear relationship.740

I. LArPID: A Prong Classification CNN741

To aid in event selections and physics analyses, another CNN, the Liquid Argon Particle742

IDentification (LArPID) network, was developed to provide additional information about743

reconstructed prongs. CNNs have effectively been used for particle identification in the744

past (e.g. in NOvA [32]) and hold particular promise for LArTPCs given their ability to745

2 Of simulated contained νeCC events with a reconstructed vertex, 66% have an attached shower containing

at least 60% of the simulated electron’s deposited charge. For νµCC events (same conditions), 74% have

an attached track with at least 60% of the simulated muon’s deposited charge.
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(a) (b)

Figure 11: Reconstructed vs. true neutrino energies for MC νeCC (a) and νµCC (b)
interactions that were successfully reconstructed (a prong from a neutrino candidate vertex
was reconstructed with at least 60% of the simulated primary lepton’s deposited charge)
and in which all simulated neutrino final state particles are contained (begin and end
inside the detector).

image neutrino interactions with mm-scale precision. While the primary aim of LArPID is746

to perform particle identification, it also predicts the input prong’s production process and747

useful reconstruction quality metrics. Specifically, for each input prong, LArPID predicts:748

• Particle type: The network outputs five scores indicating how likely it is that the749

prong was produced by a muon, electron, photon, charged pion, or proton. As the750

vast majority of charged particles produced in MicroBooNE neutrino interactions are751

of one of these types, other very rare particles (e.g. kaon, lambda, or sigma particles)752

are ignored. While the prong is assigned the particle type with the highest score,753

as we will see in section IIIA, taking into account all five particle scores is useful in754

quantifying how confident we can be with this classification.755

• Production process: The network outputs three scores indicating how likely it is that756

the prong represents a primary final state particle produced in the neutrino inter-757

action, a secondary particle with a charged parent, or a secondary particle with a758

neutral parent. Rather than attempt to classify all common secondary particle pro-759

duction processes (Michel decays, delta ray production, pion decay, etc.) these broad760

classes were chosen to simplify the prediction while accomplishing its primary aim:761

distinguishing primary final state particles from secondaries. The two most general762
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types of observable secondary topology classes - those where the secondary prong does763

(charged parent) and does not (neutral parent) originate at the end point of another764

cluster - were chosen to provide additional information about secondaries and aid the765

network in organizing prongs into general topology classes. This production process766

prediction provides another valuable tool to aid in interpreting events.767

• Purity: The fraction of visible energy in the prong that was deposited by the true768

particle. Here, visible energy is calculated as the sum of all pixel values for all 2D769

wire-plane-image pixels used in the 3D space points that make up the reconstructed770

prong. As discussed in section II I 3, when training the network on Monte Carlo771

simulation, the labelled truth particle is the simulated particle that deposits the most772

visible energy in the input reconstructed prong.773

• Completeness: The fraction of all visible energy deposited by the true particle that774

was reconstructed in the input prong (where visible energy and “true particle” are775

defined as above for the purity prediction).776

Analyzing these network outputs for all reconstructed prongs attached to a candidate777

neutrino interaction vertex provides valuable information about both the prongs and the778

candidate neutrino interaction. The particle classification outputs not only aid in identi-779

fying particles and selecting neutrino interactions with desired final states, but could also780

allow for a more accurate neutrino energy estimate by providing a robust particle hypothesis781

in e.g. range-based momentum calculations or neural-network based energy estimation tech-782

niques utilizing high-level reconstruction outputs. In addition to organizing particles into783

parent/daughter hierarchies for true neutrino interactions, the particle production process784

can be used to veto mis-reconstructed neutrino interaction vertices placed at the position785

of e.g. a particle decay. As shown in section IIIA, it is particularly helpful in CC νe event786

selections as it can veto background events where the candidate primary electron prong is787

in fact a secondary (for example a charged pion decay product or cosmic Michel electron).788

And the completeness and purity metrics allow for the identification of poorly reconstructed789

prongs: prongs reconstructed from energy depositions of a variety of different particles or790

those representing a fragment of a true particle. These reconstruction quality metrics can be791

used to better understand reconstructed neutrino interactions and, in the future, to improve792
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the reconstruction as inputs to downstream algorithms or networks that could reorganize793

clusters into prongs that better represent particle trajectories.794

The following sections detail this LArPID network’s inputs (section II I 1), architecture795

(section II I 2), training details (section II I 3), and performance (section II I 4). Preliminary796

studies on interpreting the model are discussed in section II I 5.797

1. Network Inputs and Image Preprocessing798

The LArPID network operates on all three 2D wire-plane images (with tagged cosmic799

pixels removed) of both the input reconstructed prong and the full event. Going back800

to the 2D images provides the network with information that may have been lost during801

reconstruction as a result of dead channels or other errors. For example, in the probable CC802

νe data event shown in figure 12, shower pixels near the interaction vertex are present in the803

collection plane, but are missing in both the U and V planes. As a result, no 3D space points804

could be formed near the vertex, and the reconstructed 3D shower prong begins at a distance805

from the reconstructed neutrino interaction vertex. If considering only the 3D reconstruction806

outputs, this might indicate that the shower is a photon (which travel a distance from the807

vertex before pair-converting and depositing energy). However, by operating on the original808

2D wire-plane inputs, the LArPID network can see the shower extending back to the vertex809

in the collection plane and classifies this shower as an electron.810

Including the full-event context images, with all non-cosmic-tagged pixels, provides the811

network with a wealth of additional information that aids in all the network’s tasks. Seeing812

the full event improves particle identification accuracy by allowing the network to learn813

physical features associated with different particle types. For example, photons start at a814

distance from the interaction vertex, whereas electrons begin depositing energy directly at815

the vertex. Neutral pions decay into a pair of photons, so the network can learn that when816

it sees two showers pointing back to the vertex these are likely photons. Preliminary studies817

indicating that the network indeed picks up on this kind of context information in assigning818

particles scores are presented in section II I 5. The context information is of course also819

needed to observe parent or fellow neutrino final state particles in distinguishing between820

primaries and secondaries in the production process classifier. Finally, allowing the network821

to observe when prong pixels are embedded in a larger cluster or a mix of different clusters822
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Figure 12: Bottom: zoomed in view of three wire plane images for a probable CC νe
interaction in a MicroBooNE open dataset. The views are from the U induction plane
(left), the V induction plane (center), and the Y collection plane (right). Top:
Reconstructed neutrino candidate for the same event with PMT positions recording flashes
highlighted (purple: reconstructed neutrino vertex position, copper: 3D space points in
reconstructed shower, green: 3D space points in reconstructed track). This event passed
our selection even though there is a visible gap in 3D spacepoints between the shower and
vertex caused by unresponsive wires in the U and V planes. However, the prong-CNN still
designated the shower electron-like likely due to the shower visibly starting from the vertex
in the Y plane. This is a candidate example where using the low-level 2D information has
helped overcome downstream reconstruction errors.

is needed for accurate completeness and purity estimates.823

The prong and context images passed to the network are processed as follows. To obtain824

the prong images, 3D space points in the reconstructed prong are projected back into the 2D825

wire-plane images to obtain all associated pixels. To reduce computational requirements,826

these images are then cropped to a 512x512 pixel (153.6 x 153.6 cm) window. This window827

size is large enough to encompass most charged particles from neutrino interactions in Micro-828

BooNE. This crop is performed separately in each wire plane. In a given wire-plane image,829

when the full set of prong pixels does fit within this window, the crop is centered around830
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the middle of the prong (the point half-way between the min and max row and column).831

If the prong pixels do not fit within this window, the crop is centered around the end of832

the prong for tracks and around the beginning of the prong for showers. This decision was833

taken as most of the information in distinguishing muon, charged pion, and proton tracks834

lies at their end (as the particle slows down and potentially decays), whereas the informa-835

tion needed to distinguish between photon and electron showers lies at the beginning, in836

the shower trunk. In each wire-plane, the context image is cropped around the same region837

as the prong image. Before passing these six images (one prong and one context image for838

all three wire-planes) to the network, pixel values are normalized into the range of roughly839

-1 to 1 by subtracting the mean and dividing by the standard deviation of all final state840

particle pixels in a large set of simulated neutrino interactions. An example of the six input841

images passed to the network for a reconstructed charged pion track from a simulated CC842

νµ interaction is provided in figure 13.843

2. Network Architecture844

The LArPID network architecture is illustrated in figure 14. A 34-layer residual network845

(ResNet34) [24] was chosen for the CNN3. LArPID’s ResNet34 CNN has two input channels846

for the prong and context image of one wire plane, and it operates separately on each847

wire plane using shared weights for all three. A 2D adaptive average pooling operation848

is performed on the output of the final layer, providing 512 learned features for each of849

the three wire planes. These features are concatenated into a single 1536-length feature850

vector summarizing information learned about the input prong. This concatenated feature851

vector is then used as input to four multi-layer perceptrons (MLPs) used to perform the852

four network tasks. Each MLP has a single hidden layer4. The particle classification MLP853

has a five-neuron output layer, whose logits are passed through a softmax to provide the854

muon, charged pion, proton, electron and photon scores. The particle production process855

classification MLP uses a length three output layer and softmax to provide the primary,856

secondary with charged parent, and secondary with neutral parent scores. The purity and857

3 While slightly improved performance might be achieved by using an deeper network, this would have

increased the computational complexity and made the network difficult to deploy on cpus as required for

large-scale MicroBooNE data processing. An 18 layer ResNet CNN was tested as well, but was found to

provide lower performance.
4 Increasing the number of hidden layers was found to increase the time it took the model to converge

during training without improving performance
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Figure 13: Example LArPID input images for a reconstructed charged pion track from a
simulated CC νµ interaction. Top row: prong images for all three wire planes. Bottom
row: full event context images for all three wire planes

completeness regression MLPs use a single-neuron output layer and sigmoid to provide purity858

and completeness predictions in the required physical range of 0 to 1.859

3. Training860

The LArPID network was trained on a sample of over 652,000 reconstructed prongs from861

MicroBooNE neutrino Monte Carlo simulations overlaid over off-beam cosmic-ray back-862

ground data [MC citation]. Only prongs attached to reconstructed candidate neutrino in-863

teraction vertices were considered. If an event had multiple reconstructed neutrino vertices,864

only prongs attached to the vertex with the highest LArMatch neutrino keypoint score were865

selected for training. Two additional requirements were imposed on prongs selected for the866

training sample:867

40



Figure 14: LArPID network architecture with the example inputs from figure 13.

• Training prongs must have at least 10 above-noise-threshold pixels (which span 3cm868

in the detector) in all three wire-plane images. Studies were performed to test if869

increasing this minimum-pixel threshold might improve performance on larger prongs870

that are primarily considered in neutrino event selections. However, it was found that871

the network, when trained only on larger (minimum pixel threshold = 90) prongs, did872

not perform better on a validation set including only such large prongs than when873

trained on a prong sample including the smallest reconstructed prongs.874

• To allow assignment of truth labels, no more than 20% of charge included in training875

prongs could come from cosmic-ray contamination.876

To assign truth labels for training and validation, 3D space points included in recon-877

structed prongs are projected back into the three wire-plane images to obtain all associated878

2D pixels. The total amount of charge in all prong pixels that was deposited by each879

simulated charged particle produced in the neutrino interaction is summed, and the true-880

particle-type label is assigned as the simulated particle that deposited the most charge. The881

total charge deposited in the entire detector by this truth-matched simulated particle is also882
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calculated, and the true completeness value is assigned as the fraction of this charge included883

in the reconstructed prong. The purity value is assigned as the fraction of all charge in the884

reconstructed prong that is contributed by this truth-matched simulated particle. Finally,885

the particle production process label is assigned according to how the truth-matched simu-886

lated particle was generated. The number of prongs in the training sample truth-matched887

to each of the five particle types is shown in table I below.888

muons charged pions protons electrons photons

163,987 53,871 266,653 90,940 76,915

Table I: Number of prongs truth-matched to each of the five particle classes in the LArPID
training sample

The network was trained over this sample for 20 epochs using a multi-task loss function889

with learned weights following the procedure outlined in [33]. A loss must be defined for890

each of LArPID’s four tasks (predictions) and combined to form the network’s full loss891

function. The relative weight attached to each task-specific loss function can significantly892

impact the network’s performance, so the value chosen for these weights is important. The893

method employed in [33] treats task weights as learned network parameters that can be894

optimized during training. The authors found that this technique can provide superior895

performance than even optimal hard-coded weights (e.g. hard-coded values of w1 and w2 in896

the two-task loss function L = w1L1 + w2L2). We confirmed this in the case of LArPID by897

varying hard-coded task weights used in combining task specific loss functions. We found898

that the network trained with learned weights outperformed the network trained with any899

set of hard-coded weight values. We further found that the network’s particle classification900

performance, perhaps the most important network task, was no better when trained only on901

that task than when trained on all four tasks using learned task weights. Therefore, using902

the technique outlined in [33], the loss function used to train LArPID was defined as:903

L = e−scrLMSE(ŷcr, ycr) + e−sprLMSE(ŷpr, ypr)

+ 2e−sicLCE(ŷic, yic, wic) + 2e−spcLCE(ŷpc, ypc, wpc)

+ scr + spr + sic + spc

(5)

where LMSE and LCE are the mean squared error (for regression tasks) and cross entropy904
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(for classification tasks) loss functions, respectively; y and ŷ are the true and predicted905

network outputs, respectively, for a given input and network task; the s parameters are906

the learned task-specific loss weights; the subscripts cr, pr, ic, and pc denote quantities907

for the completeness regression, purity regression, particle-identification classification, and908

particle-production-process classification tasks, respectively; and wic and wpc are vectors of909

class weights based on the number of prongs belonging to each particle identification and910

production process classes, respectively, in the full training sample. These class weights are911

calculated once upfront and used to weight contributions to the cross entropy loss functions912

to account for class imbalances. This ensures, for example, that the network doesn’t learn913

to increase the probability of classifying all inputs as protons simply because there are more914

proton-labelled prongs in the training sample than any other type of particle.915

Additional training details are as follows:916

• One data augmentation technique was employed to reduce over-fitting: input images917

were randomly flipped horizontally or vertically, each with a probability of 50%. As918

demonstrated in figure 15, which shows overall particle classification accuracy for the919

training sample and an independent validation sample with 50,000 prongs (10,000 per920

particle type), over-fitting was not a significant issue. Similar few percent differences921

were observed in the training vs. validation performance of the other network tasks.922

More details and discussion on network performance in the validation sample are923

presented in section II I 4.924

• The AdamW gradient descent algorithm [34] was used to update network weights.925

• The single-cycle cosine annealing learning rate scheduler shown in figure 16 was used.926

This type of variable learning rate has been found to reduce the number of training927

epochs required for convergence [35]. The minimum and maximum learning rate values928

used in the scheduler were chosen by varying the learning rate in a test training run929

and determining the range of rate values over which the model continues to converge.930

A variety of other single-cycle, oscillatory, and stepped learning rate schedulers were931

tested, but none achieved better performance or faster convergence than the chosen932

schedule depicted in figure 16.933
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Figure 15: Overall particle classification accuracy for the training sample and an
independent validation sample with 50,000 prongs (10,000 per particle type) as a function
of training iteration.

Figure 16: The learning rate scheduler used to train the LArPID network, shown as a
function of training iterations. The full schedule lasts for 20 epochs.

4. Network Performance934

The performance of the LArPID network was tested on an independent validation sample935

of 50,000 reconstructed prongs (10,000 of each particle type: muons, charged pions, protons,936

electrons and photons). The same selection criteria detailed in section II I 1 used to construct937

the training sample were used for this validation sample. For the classification task results,938

an additional requirement that at least 60% of the validation prongs’ total pixel charge be939

contributed by a single simulated particle (true prong purity > 60%) was imposed. This940

requirement was placed to ensure sensible truth labels could be assigned.5941

The network achieved an impressive overall validation accuracy of 91.8% on the particle942

5 A version of the network was also trained with the same true prong purity > 60% requirement, but it was

found that this did not improve the network’s classification performance on a purity > 60% validation

sample. This requirement was therefore not ultimately imposed on the training sample so that the network

could be trained to make more accurate purity and completeness predictions in cases where purity < 60%.
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identification task. A confusion matrix showing the accuracy for each particle type is shown943

in table II. The per-particle validation accuracy is very high for all five particle types, and944

when the network does mis-classify a prong, it almost always applies the label of a particle945

that leaves similar signatures in the detector. For example, mis-classified electrons are almost946

always assigned a photon label (and vice versa) and mis-classified charged pions are almost947

always assinged a muon label (and vice versa).948

True e± True γ True µ± True π± True p

Fraction classified as e± 84.5% 5.2% 0.1% 0.5% 0%

Fraction classified as γ 12.7% 94.3% 0.2% 0.2% 0.1%

Fraction classified as µ± 0.4% 0.1% 93.9% 11.5% 0.3%

Fraction classified as π± 2.3% 0.3% 5.6% 86.5% 1.6%

Fraction classified as p 0.1% 0.1% 0.2% 1.4% 97.9%

Table II: A confusion matrix showing LArPID’s particle classification accuracy in the
validation sample: the fraction of prongs truth matched to each particle type that LArPID
classified as an electron (e±), photon (γ), muon (µ±), charged pion (π±), or proton (p)
(columns sum to 100%).

The network’s overall validation accuracy on the particle-production-process classification949

task was similarly high, at 89.0%. As shown in table III, accuracy is high for all three950

production-process classes. Accuracy is highest for identifying secondaries with a neutral951

parent, likely as this signature (a prong created with no other tracks or showers originating952

at it’s start position) is more unique than the other two classes.953

True primary True neutral parent True charged parent

Fraction classified as primary 87.8% 3.4% 6.5%

Fraction classified as neutral parent 2.9% 93.6% 6.9%

Fraction classified as charged parent 9.3% 3.0% 86.7%

Table III: A confusion matrix showing LArPID’s particle-production-process classification
accuracy in the validation sample: the fraction of prongs with each true production-process
class that LArPID classified as a primary neutrino-final-state particle, a secondary with a
charged parent, or a secondary with a neutral parent (columns sum to 100%).

The validation accuracy of the network’s completeness and purity predictions are illus-954

trated in figure 17, which shows 2D histograms of the predicted vs. true reconstruction955

quality metrics. For a given range of true completeness or purity values, there is a non-956

trivial spread in the predicted values. However, the bulk of the prongs in these heat maps957
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(a) (b)

Figure 17: A 2D histogram showing predicted vs. true completeness (a) and purity (b) for
prongs in the validation sample.

do roughly follow a one-to-one line. So while the exact value of LArPID’s completeness958

or purity prediction for a given prong should not be interpreted with extremely high con-959

fidence, these predictions are robust in revealing whether the input prong is likely to be a960

small fragment of a true particle, a mostly complete reconstruction, or something in between961

(completeness) and, similarly, whether it is likely to be reconstructed from a mix of different962

particles or mostly from a single particle (purity).963

5. Interpreting the Model964

Preliminary image manipulation studies were carried out to shed light on what informa-965

tion LArPID is using from input images to make its predictions. While clear decision-making966

algorithms cannot be extracted from the complex network of neurons in deep learning mod-967

els, these interpretability studies can provide valuable insights into how neural networks are968

making decisions. The technique employed here involves testing hypotheses on what infor-969

mation is being used in the network by providing the model with a set of counter-factual970

images. This is done by replacing an input reconstructed prong or a particle from the context971

image with another simulated particle and seeing how the network output changes.972

An example of one such image manipulation study is shown in figure 18. Here, we973

checked to see if the network is learning, from examples of π0 decay photons, that when two974

electromagnetic showers’ initial trajectories can be traced back to an intersection (the π0
975

decay position) near the interaction vertex, that these showers are likely photons. Figure976
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Figure 18: One wire-plane prong image (a) and context image (b) for a reconstructed
photon prong produced during a π0 decay in a simulated CC νµ interaction. A modified
context image (c) in which the input photon prong’s companion π0 decay photon is
removed. With the original inputs (a and b), LArPID outputs an electron score of 0.027
and photon score of 0.97. With the modified inputs (a and c), LArPID outputs an electron
score of 0.21 and photon score of 0.77.

18 (a) and (b) show (for one wire-plane) the prong and context images for a reconstructed977

photon shower produced during a π0 decay. The second π0 decay photon is clearly visible in978

the context image. With these inputs, the network confidently and correctly predicted that979

the input prong is a photon, with photon and electron scores of 0.97 and 0.027, respectively.980

The network was then presented with the same input prong images but modified context981

images (figure 18c) that had the second π0 decay photon removed. With these inputs,982

the network’s confidence in its photon prediction decreased significantly, with photon and983

electron scores of 0.77 and 0.21, respectively. The same context manipulation had a similar984

effect in other examples of input photon prongs from π0 decays, indicating that the network985

has indeed, as expected, learned to increase its photon scores for input showers that are986

consistent with π0 decays.987

Another set of image manipulations for an example LArPID input is shown in figure 19.988

Panels (a) and (b) show (for one wire-plane) input images for a prong (from a simulated CC989

νµ interaction) that is reconstructed from both a short charged pion track and the electron990

shower produced following the pion decay. As the majority of this reconstructed prong991

comes from the simulated electron, the network predicts that this prong is an electron, with992

electron and charged pion scores of 1 and 2.4·10−3, respectively.993

We wanted to test how the network’s individual particle scores are impacted when an994
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Figure 19: One wire-plane prong image (a) and context image (b) for a prong reconstructed
from a charged pion and an electron produced during the pion decay in a simulated CC νµ
interaction. A modified prong (c) and context image (d) in which the charged pion and its
decay electron were replaced by a simulated electron with the same start position and
momentum and the original charged pion. A second set of modified prong (e) and context
(f) images in which the same substitution was performed with another simulated electron,
but the replacement electron was simulated to begin at a short distance from the neutrino
interaction position. LArPID’s output electron, photon, and charged pion scores were 1,
8.9·10−4, and 2.4·10−3, respectively, for the original images (a and b); 0.99, 6.5·10−3, and
1.8·10−4, respectively, for the first set of modified images (c and d); and 3.8·10−4, 1, and
2.7·10−6, respectively, for the second set of modified images (e and f).

input prong is reconstructed with significant contributions from different particles. In cases995

such as these, can information about what combination of particles contribute to a low-purity996

prong be gleaned from the individual particle scores? In figure 19 (c) and (d), the input prong997

was replaced with a pure simulated electron with the same start position and momentum998

as the original charged pion. With these inputs, the network’s pion score decreased to999

1.8·10−4. A similar set of manipulations on combined charged pion-electron prongs yielded1000

similar results, indicating that the charged pion score for classified electron prongs can be1001

used to determine if such prongs likely came from a charged pion decay. This feature is1002
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exploited in the CC νe selection of section IIIA to reduce CC νµ backgrounds.1003

An additional set of image manipulations shown in figure 19 verify that the network is1004

using the context images to learn that showers that start at a distance from an interaction1005

vertex are more likely to be photons, and those that start at the vertex are more likely to1006

be electrons. In panels (e) and (f), a similar manipulation is performed in which the input1007

prong was replaced with a simulated electron, but this time with a start position at a small1008

distance from the interaction vertex. With these inputs, even though the input is a true1009

electron, the network confidently classifies it as a photon prong, with photon and electron1010

scores of 1 and 3.8·10−4, respectively. A similar set of manipulations in which simulated1011

electrons were placed at a distance from an interaction vertex yielded the same result (a1012

confident photon prediction), indicating that the network has indeed learned to use this1013

context information for electron/photon discrimination.1014

These tests demonstrate the utility of such image manipulation studies in learning how1015

the network is making decisions. In a future work, these manipulations will be performed1016

at scale and the results quantified for a more complete set of counter factuals. This will1017

improve understanding of the model, increase confidence in its predictions, and inform how1018

its outputs might more effectively be used in event selections and physics analyses.1019

III. DEMONSTRATION: SELECTION OF INCLUSIVE νeCC AND νµCC INTER-1020

ACTIONS IN MICROBOONE1021

A. CC nue inclusive selection cuts1022

As a demonstration of the effectiveness of these reconstruction tools, we have developed1023

a set of inclusive CC νe selection criteria utilizing the output of the LArMatch and LArPID1024

networks. As we will show, an effective, high purity and efficiency CC νe selection can1025

be achieved by selecting LArMatch-identified neutrino candidate vertices and filtering out1026

cosmic and neutrino backgrounds with the Wire-Cell based cosmic tagger discussed in section1027

IIA and cuts on LArPID outputs of attached prongs. For this study, we use off-beam data1028

to analyze the cosmic-ray background and simulated neutrino interactions overlaid over1029

cosmic-ray background data for CC νe and neutrino background events.1030

The full set of CC νe selection criteria is provided in table IV. We will examine the impact1031
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of adding each selection cut one at a time. With each new cut, we will then discuss the1032

motivation for its inclusion, show distributions of the cut variable for signal and background,1033

show data/MC comparisons of reconstructed neutrino energy for events passing the new1034

selection criteria using a small 4.4·1019 POT MicroBooNE open data sample, and show the1035

MC-predicted impact of the new cut on efficiency as a function of true (simulated) neutrino1036

energy. A new “cut set” is defined in table IV as a set of selection criteria including a newly1037

specified cut along with all previous cuts.1038

Table IV: Inclusive CC νe Selection Cuts

Cut Notes

LArMatch-identified neutrino candidate vertex found in-
side the fiducial volume

Added in cut set 1 (included
in cut sets 1-6 and final set)

3D space points of prongs attached to neutrino candidate
do not all overlap with Wire-Cell-tagged cosmics

Added in cut set 2 (included
in cut sets 2-6 and final set)

No LArPID-identified muon tracks are attached to neu-
trino candidate

Added in cut set 3 (included
in cut sets 3-6 and final set)

At least one LArPID-identified electron shower attached
to neutrino candidate

Added in cut set 4 (included
in cut sets 4-6 and final set)

The largest identified electron was classified by LArPID
as a neutrino final state particle

Added in cut set 5 (included
in cut sets 5-6 and final set)

No tracks attached to neutrino candidate have a high
LArPID muon score: max log(muon score) < −3.7

Added in cut set 6 (included
in cut set 6 and final set)

The largest identified electron was classfied by LArPID
as an electron with high confidence: log(electron score)
− (log(pion score) + log(photon score))/2 > 7.1

Added in final cut set

The first CC νe selection criteria is that a LArMatch-identified neutrino interaction vertex1039

was found inside the detector fiducial volume. For our neutrino selections, we define the1040

fiducial volume as 3cm from the space-charge corrected TPC boundary as in [17]. Data1041

and MC reconstructed neutrino energy distributions with only this requirement are shown1042

in figure 20a. The data excess seen here and as additional cuts are applied is not unique1043

to our CNN-based reconstruction and selection and has been seen in other frameworks. As1044

we will show in section IIID, data and predictions with the full set of selection cuts are1045

consistent once accounting for statistical and systematic uncertainties. The MC-predicted1046

CC νe selection efficiency with just this vertex reconstruction requirement is shown in figure1047

20b. Vertex finding has a non-trivial impact on efficiency at low (<500 MeV) neutrino1048

energies where electron showers and other prongs are small and more difficult for LArMatch1049
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(a) (b)

Figure 20: (a): Data/MC reconstructed neutrino energy comparison of events selected by
CC νe cut set 1 with 4.4·1019 POT of MicroBooNE run1 data. (b): MC-predicted CC νe
efficiency vs. true neutrino energy with CC νe cut set 1. The CC νe cut set 1 only contains
the requirement that a LArMatch-identified neutrino vertex was reconstructed inside the
fiducial volume. Cut sets are defined in table IV.

to identify and separate from cosmic background.1050

If LArMatch identifies more than one neutrino keypoint cluster in an event, we select the1051

one with the highest keypoint score as the candidate neutrino interaction vertex. Further1052

selection criteria apply to prongs attached to this candidate interatction vertex.1053

There is still a significant cosmic-ray background after selecting events with LArMatch-1054

identified neutrino candidates. The majority of this background can be removed with the1055

Wire-Cell cosmic tagger discussed in section IIA. Figure 21a shows neutrino and cosmic1056

background distributions for the fraction of 3D points in any cluster attached to the neutrino1057

candidate vertex that was tagged as cosmic. Events in the final cosmic-dominated bin with1058

100% cosmic overlap (events where all hits in all prongs attached to the vertex have at least1059

one constituent pixel that was tagged as cosmic by the Wire-Cell cosmic tagger) are rejected.1060

Figure 21b shows the new reconstructed neutrino energy distributions with this requirement1061

included (with “cut set 2”). Figure 21c compares the efficiency curve for this “cut set 2”1062

to “cut set 1,” which only includes the neutrino vertex reconstruction requirement. This1063

cosmic-ray rejection cut does not have a large impact on CC νe efficiency.1064

Further cuts on the LArPID outputs of prongs attached to the candidate neutrino vertex1065

can remove almost all of the remaining cosmic and neutrino backgorund. As a first step,1066

to remove most of the CC νµ background and some of the remaining cosmic background,1067
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(a)

(b) (c)

Figure 21: (a): MC and off-beam cosmic background data distributions of the fraction of
hits associated with the candidate neutrino vertex that were constructed from pixels
tagged as cosmics. Events in the final bin were rejected as the new requirement in CC νe
cut set 2. (b): Data/MC reconstructed neutrino energy comparison of events selected by
CC νe cut set 2 with 4.4·1019 POT of MicroBooNE run1 data. (c): MC-predicted CC νe
efficiency vs. true neutrino energy with CC νe cut sets 1 and 2, and the ratio of these two
efficiency curves. Cut sets are defined in table IV.

events with identified muons are rejected. Figure 22a compares signal and background1068

distributions for the number of reconstructed muons - the number of LArPID identified1069

muon tracks attached to the candidate neutrino vertex - in events remaining after applying1070

“cut set 2.” The requirement that no reconstructed muons are present in the event was added1071

in “cut set 3.” Figure 22 (a) and (b) show the reconstructed neutrino energy distributions1072

and efficiency curve comparisons for cut sets 2 and 3. This muon-track rejection cut does1073

not have a large impact on efficiency.1074

Now that events with identified muons have been removed, we select events with identified1075
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(a)

(b) (c)

Figure 22: (a): MC and off-beam cosmic background data distributions of the number of
LArPID-identified muon tracks (reco muons) attached to the candidate neutrino vertex.
The requirement that no reco muons are present was added in CC νe cut set 3. (b):
Data/MC reconstructed neutrino energy comparison of events selected by CC νe cut set 3
with 4.4·1019 POT of MicroBooNE run1 data. (c): MC-predicted CC νe efficiency vs. true
neutrino energy with CC νe cut sets 2 and 3, and the ratio of these two efficiency curves.
Cut sets are defined in table IV.

electrons. Figure 23a shows the distribution of the number of LArPID-identified electron1076

showers for remaining signal and background events. The requirement that at least one1077

electron shower was identified was added in “cut set 4.” This removes the majority of the1078

remaining neutrino and cosmic backgrounds, but has a moderate impact on our CC νe1079

selection efficiency across neutrino energies (see figure 23c). The data/MC reconstructed1080

neutrino energy comparison with “cut set 4” is shown in figure 23b.1081

As can be seen in figure 23a, it is not rare in true CC νe events for multiple electron showers1082

to be identified. This is generally not due to LArPID incorrectly classifying showers, but1083
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(a)

(b) (c)

Figure 23: (a): MC and off-beam cosmic background data distributions of the number of
LArPID-identified electron showers (reco electrons) attached to the candidate neutrino
vertex. The requirement that at least one reco electron is present was added in CC νe cut
set 4. (b): Data/MC reconstructed neutrino energy comparison of events selected by CC
νe cut set 4 with 4.4·1019 POT of MicroBooNE run1 data. (c): MC-predicted CC νe
efficiency vs. true neutrino energy with CC νe cut sets 3 and 4, and the ratio of these two
efficiency curves. Cut sets are defined in table IV.

clustering errors in which small fragments of the true primary electron are reconstructed as1084

a different shower. In these cases, one reconstructed shower tends to carry the majority of1085

the true electron’s deposited charge. The candidate primary electron is therefore identified1086

as the LArMatch-identified electron shower with the most charge.1087

The majority of the remaining cosmic and neutrino background can be removed by placing1088

additional cuts on the LArPID outputs for this candidate primary electron shower. In much1089

of the remaining background, a true electron is in fact present, but as a secondary, e.g. a1090

Michel electron, delta ray, or an electron produced after a charged pion decay. Figure 24a1091
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(b) (c)

Figure 24: (a): MC and off-beam cosmic background data distributions of the candidate
primary electron shower’s LArPID production process class output. The requirement that
the candidate primary electron was classified by LArPID as a primary particle was added
in CC νe cut set 5. (b): Data/MC reconstructed neutrino energy comparison of events
selected by CC νe cut set 5 with 4.4·1019 POT of MicroBooNE run1 data. (c):
MC-predicted CC νe efficiency vs. true neutrino energy with CC νe cut sets 4 and 5, and
the ratio of these two efficiency curves. Cut sets are defined in table IV.

shows the output of the LArPID particle production classifier for the candidate primary1092

electron in signal and background events remaining after “cut set 4.” This classifier is able1093

to accurately separate out the true primary electron showers from the candidates produced1094

in background events, almost all of which are classified as secondaries. The requirement that1095

the primary electron candidate was classified by LArPID as a neutrino final state particle1096

was therefore added in “cut set 5.” This new requirement has a fairly small impact on CC νe1097

selection efficiency except at very low (<200 MeV) neutrino energies (see figure 24c). The1098

new reconstructed neutrino energy distributions are shown in figure 24b.1099
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(b) (c)

Figure 25: (a): MC and off-beam cosmic background data distributions of the log of the
highest LArPID muon score for any track attached to the candidate neutrino vertex. The
bin at -20 contains events with no tracks. The requirement that no track have a log(muon
score) above -3.7 was added in CC νe cut set 6. (b): Data/MC reconstructed neutrino
energy comparison of events selected by CC νe cut set 6 with 4.4·1019 POT of MicroBooNE
run1 data. (c): MC-predicted CC νe efficiency vs. true neutrino energy with CC νe cut
sets 5 and 6, and the ratio of these two efficiency curves. Cut sets are defined in table IV.

At this stage, much of the remaining background is present due to photons or secondary1100

showers being mis-classified as primary electrons or muons being mis-classified as charged1101

pions (and therefore not getting rejected by the no reconstructed muons cut). The latter1102

issue is addressed first.1103

Generally, when muon tracks are mis-classified as charged pions, they still get a fairly1104

high LArPID muon score. Events remaining after “cut set 5” with a true muon present can1105

therefore be identified by searching for those containing a track with a high muon score (even1106

though events with muon-classified tracks have already been removed). Figure 25a shows1107
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the distribution for the log of the maximum LArPID muon score for any track attached1108

to the candidate neutrino vertex in remaining events. The cut on this distribution that1109

provides the largest CC νe selection purity*efficiency product is -3.7. Events with a track1110

that has a muon score above this value were therefore removed as the new requirement in1111

“cut set 6.” The cut set 6 neutrino energy distributions and efficiency curves are shown in1112

figure 25 (b) and (c). This cut does not have a large impact on selection efficiency.1113

The final cut seeks to remove events where a photon or a mis-reconstructed charged pion1114

prong (composed of a charged pion and the electron produced in its decay) was mis-classifed1115

by LArPID as a primary electron. As with the mis-classified muon tracks, in these cases, the1116

network tends to hedge its bets and also give these showers a high photon or charged pion1117

score. An electron class confidence metric for the candidate primary electron was therefore1118

defined as the difference in its LArPID electron score and the average of its charged pion1119

and photon scores: log se− (log sπ +log sγ)/2, where se, sπ, and sγ are the electron, charged1120

pion, and photon scores, respectively.6 The distribution of the primary electron candidate’s1121

class confidence metric for signal and background events remaining after “cut set 6” is shown1122

in figure 26a. The signal and background distributions separate out well. The electron class1123

confidence cut that maximized the CC νe purity*efficiency product, class confidence > 7.1,1124

was added as the final CC νe selection cut. The data and MC reconstructed neutrino energy1125

distributions with all selection cuts is shown in figure 26b, which includes a 1σ uncertainty1126

band on the predictions including both statistical and systematic (discussed in section III C)1127

errors. As we will show in section IIID, the data and predictions are consistent within the1128

quoted uncertainties. The final selection efficiency is shown in figure 26c along with a1129

comparison to “cut set 6.” Adding in the electron class confidence cut does significantly1130

impact efficiency, but is necessary to remove remaining backgrounds.1131

Additional cuts (including utilizing the LArPID completeness, purity, and production1132

process score values) were tested, but none outperformed these results. With the cuts1133

enumerated in table IV, we are able to achieve a CC νe selection with an overall efficiency1134

of 56.8% and purity of 91.1%, which is very competitive with PRD 105:112005 [17], the1135

highest-efficiency CC νe search previously published by MicroBooNE. Additional data/MC1136

comparisons (including hand scans of selected data events), performance plots, and a detailed1137

6 We also attempted cutting separately on the charged pion and photon scores, but this did not achieve

better results.
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Figure 26: (a): MC and off-beam cosmic background data distributions of the candidate
primary electron shower’s electron class confidence (LArPID electron score minus average
of charged pion and photon scores). The requirement that the primary electron candidate
have an electron class confidence value above 7.1 was added to the final CC νe cut set. (b):
Data/MC reconstructed neutrino energy comparison of events selected by the full CC νe
cut set with 4.4·1019 POT of MicroBooNE run1 data. (c): MC-predicted CC νe efficiency
vs. true neutrino energy with all CC νe cuts and cut set 6, and the ratio of these two
efficiency curves. Cut sets are defined in table IV.

comparison of these results with the inclusive CC νe selection of PRD 105:112005 are shown1138

in section IIID.1139

B. CC numu inclusive selection cuts1140

Here, we use a similar approach - taking events with LArMatch-identified neutrino vertex1141

candidates (selecting the one with the highest score if there are multiple), applying the same1142

Wire-Cell cosmic rejection cuts discussed in section IIIA, and cutting on the LArPID outputs1143
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of attached prongs - to achieve a highly effective inclusive CC νµ selection. Figure 22a from1144

section IIIA shows the number of LArPID-identified muon tracks attached to the neutrino1145

candidate for MC CC νµ events, cosmic, and (in this context) other simulated neutrino1146

backgrounds (after applying Wire-Cell cosmic rejection cuts). A CC νµ dominated sample1147

can be selected by simply requiring that there be at least one identified muon track attached1148

to the LArMatch neutrino candidate vertex. (Note that figures 22b and 22c show results1149

with the CC νe requirement of 0 reconstructed muons, not the ≥ 1 condition discussed1150

here for the CC νµ selection.) When there are multiple reconstructed muons in true CC νµ1151

events, this is generally because of clustering errors in which a small section of the track1152

is reconstructed as a separate cluster. In these cases, according to MC, the track with the1153

highest LArPID muon score is truth-matched to the simulated muon 96.4% of the time, and1154

the identified muon track with the most charge is matched to the true muon 95.7% of the1155

time.1156

This simple selection yields a predicted overall CC νµ purity of 96.0% and efficiency of1157

67.9%. While significant improvements were not achieved by applying further cuts on the1158

LArPID outputs of the identified primary muon track or other attached prongs, we found1159

that purity can be increased (at the expense of efficiency) by cutting on the neutrino keypoint1160

score of the candidate neutrino vertex, the angle of the muon track (to remove downwards1161

going cosmic-background muons), and the LArPID production process scores of the muon1162

track.1163

The full set of CC νµ selection criteria are enumerated in table V. The predicted selection1164

efficiency as a function of true neutrino energy after applying each cut is shown in figure 27b.1165

As with the CC νe selection, the largest impact on efficiency comes from the neutrino vertex1166

reconstruction and the primary lepton identification. Distributions of reconstructed neutrino1167

energy for data and MC (including the 1σ uncertainty band calculated in section III C) with1168

the full selection are shown in figure 27a. The overall data excess seen here is not unique1169

to our CNN-based reconstruction and is consistent with the excess seen in the inclusive1170

CC νµ selection of MicroBooNE’s Wire-Cell reconstruction [17]. Furthermore, as we will1171

show in section IIID, the data and predictions are consistent within quoted uncertainties.1172

Additional data/MC comparisons and a more detailed comparison to the Wire-Cell CC νµ1173

selection are presented in section IIID as well.1174
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Table V: Inclusive CC νµ Selection Cuts

Cut Notes

LArMatch-identified neutrino candidate vertex found inside

the fiducial volume

Added in cut set 1 (in-

cluded in all cut sets)

3D space points of prongs attached to neutrino candidate

do not all overlap with Wire-Cell-tagged cosmics

Added in cut set 2 (in-

cluded in final set as well)

At least one track attached to the candidate neutrino vertex

was identified by LArPID as a muon

Added in final cut set

(a) (b)

Figure 27: (a): Data/MC reconstructed neutrino energy comparison of events selected by
the full CC νµ cut set with 4.4·1019 POT of MicroBooNE run1 data. (b): MC-predicted
CC νµ efficiency vs. true neutrino energy after adding each CC νµ cut, along with a ratio
of the full cet set and cut set 2 efficiency curves. Cut sets are defined in table V.

C. Systematic uncertainty estimates1175

Modeling uncertainties that contribute to our systematic errors come from four main1176

sources: modeling of the neutrino flux, modeling of the MicroBooNE detector, modeling1177

of neutrino-argon cross sections, and modeling of hadron-argon cross sections. To account1178

for detector systematics, we modify a variety of detector parameters, re-simulate a neutrino1179

sample for each variation, and analyze their impact on our predictions. This is discussed1180

in more detail in section III C 1. While these detector variations can change observables1181

in any event, variations in the parameters associated with the other sources of systematic1182

uncertainty simply alter the rate at which different events occur. These flux and cross section1183

uncertainties can therefore be studied by re-weighting individual events without the need to1184

re-simulate new neutrino samples. This method and our flux and cross section systematics1185
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(a) (b)

Figure 28: Fractional uncertainties in each reconstructed neutrino energy bin for the
inclusive (a) CC νe selection and (b) CC νµ selection. Statistical uncertainties on the
cosmic background + neutrino predictions; systematic uncertainties from our modeling of
the detector, flux, neutrino-argon cross sections, and hadron-argon interactions; and the
total combined uncertainty is shown. The use of a flat detector systematic uncertainty in
the CC νµ selection above 1.4 GeV is discussed in section III C 1.

are discussed in more detail in section III C 2.1186

The results of those studies is summarized in figure 28, which shows uncertainties in our1187

predicted event counts in each reconstructed neutrino energy bin used in the inclusive CC νe1188

and CC νµ selections. Our total uncertainty in each bin is shown, along with contributions1189

from the four sources of systematic uncertainty discussed above and statistical errors from1190

our finite cosmic background and simulated neutrino samples.1191

1. Detector Systematic Uncertainties1192

To account for uncertainties in detector modeling, we vary parameters associated with the1193

light yield (LY), light attenuation, and Rayleigh scattering length; “wiremod” modifications1194

to the amplitudes and widths of wire waveforms as a function of x position, (y,z) position,1195

and angles θxx and θyz of particle trajectories; a variation in electron-ion recombination1196

parameters (“recomb2”); and an alternative electric field inside the TPC from the space1197

charge effect (SCE). See e.g. [14] for additional information on these variations.1198

For each variation, we re-simulate the same sample of Monte Carlo neutrino events and1199

calculate a covariance matrix for each kinematic observable to quantify the bin-by-bin shift1200

in event counts: F k
ij = (Nk

i − NCV
i )(Nk

j − NCV
j )/(NCV

i NCV
j ), where F k is the fractional1201
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covariance matrix for the kth variation, Nk
i is the number of events in bin i of the simulation1202

with variation k, and NCV
i is the number of events in bin i for the central value simulation1203

with default detector parameters. Overall 1σ detector-related fractional uncertainties in1204

each bin are then given by σi/Ni =
√∑

k F
k
ii .1205

The computational expense associated with re-simulating neutrino events for each vari-1206

ation presents a significant challenge in quantifying these detector systematics. The O(105)1207

event samples used in this analysis provided inadequate statistics to provide a robust esti-1208

mate of detector uncertainties in certain regions. For each variation, two simulations were1209

combined to predict event counts: one νµ dominated sample in which neutrinos are simulated1210

in the same proportion estimated to occur in the beam, and one involving only the intrinsic1211

CC νe component. While the intrinsic νe simulation provided adequate statistics for CC νe1212

predictions, roughly just 10 raw neutral current and νµ background events (there are small1213

variations between the different simulated samples) from the former beam simulation passed1214

our CC νe selection. Statistical variations from this background prediction therefore caused1215

large artificial fluctuations in our estimated detector systematic uncertainties. In the CC νµ1216

selection, statistics are also very low in the high energy tails of the reconstructed neutrino1217

energy and muon momentum distributions (see figure 29), again causing large fluctuations1218

in estimated systematics in those regions.1219

(a) (b)

Figure 29: Monte Carlo statistical errors on events passing the CC νµ selection for the
central value simulation used to estimate detector systematics, binned in reconstructed
neutrino energy (a) and muon momentum (b).

We will address these statistical shortcomings prior to publishing these results by re-1220

processing one-order-of-magnitude larger samples for these detector variations. As a tem-1221
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porary solution, we place a lower bound on our detector systematics with the following1222

corrections. For the CC νµ selection, we combine events above 1.4 GeV in reconstructed1223

neutrino energy and above 1.2 GeV/c in reconstructed muon momentum into a single bin for1224

those respective distributions. When calculating our total uncertainty in bins above those1225

thresholds (as in figure 28b), we use the flat high energy/momentum detector systematics1226

obtained with this approach. For the CC νe selection, we assume that the kinematic de-1227

pendence of Nk
i − NCV

i , the central value vs. detector variation excess in each bin of all1228

kinematic distributions, is the same for the NC and νµ backgrounds that pass the selection1229

as it is for the CC νe signal events that pass the selection. With this assumption, we estimate1230

the predicted signal + background event counts by scaling the CC νe signal distributions by1231

(Ns + Nb)/Ns, where Ns and Nb are the total number of signal and background events that1232

pass the selection, respectively.1233

Our total detector systematic uncertainties in each reconstructed neutrino energy bin of1234

the inclusive CC νe and CC νµ selections with and without the low-statistics corrections1235

discussed above is shown in figure 30. The uncertainties without the corrections provide a1236

lower bound for our estimated detector-related modeling errors, while the larger, statistical-1237

fluctuation-driven uncertainties without the corrections provide an upper bound. To avoid1238

inflating our detector systematics as a result of low-statistics fluctuations and provide a1239

more strict test on data / Monte Carlo consistency in our selection results (discussed in1240

section IIID), we use the lower-bound detector uncertainties with the statistical corrections1241

discussed above. The full fractional covariance matrix (binned in reconstructed neutrino1242

energy) for all detector variations with these low-statistics corrections is shown in figure 31.1243

2. Flux, Cross Section, and Hadron Re-Interaction Uncertainties1244

To calculate systematic uncertainties arising from flux, neutrino cross section, and hadron1245

re-interaction predictions we employ the same method outlined in [14]. Flux uncertainties1246

arise from three main sources: the properties of the magnetic focusing horn, hadron produc-1247

tion in the target, and secondary hadron interactions. Neutrino cross-section uncertainties1248

arise from a large number of parameters associated with each neutrino interaction mode1249

and final state interactions that affect all modes. The hadron re-interaction uncertainty1250

calculations consider variations in parameters associated with hadron-argon cross sections1251
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(a) (b)

Figure 30: Total detector variation uncertainties in each reconstructed neutrino energy bin
of the inclusive (a) CC νe and (b) CC νµ selections. Results are shown with and without
the low-statistics corrections discussed in the text.

(a) (b)

Figure 31: Fractional covariance matrices binned in reconstructed neutrino energy from all
detector variations for the inclusive (a) CC νe and (b) CC νµ selections.

for protons and charged pions. These uncertainties are accounted for by re-weighting events1252

with each systematic parameter variation and comparing the modified reconstructed spectra1253

with the nominal simulation. Additional details on the variations considered are provided1254

in [14].1255

Given the reconstructed spectra with bin counts Ni for each set of varied parameters, a1256

covariance matrix M can be constructed where the variance in bin counts (resulting from1257

the parameter variations) is provided in the diagonal entries and the covariance between the1258

counts in each pair of bins in the off-diagonal entries. The fractional covariance matrices1259

Fij = Mij/(NiNj) including all flux, cross section, and hadron re-interaction variations for1260
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(a) (b)

Figure 32: Fractional covariance matrices binned in reconstructed neutrino energy from all
flux, cross section, and hadron re-interaction variations for the inclusive (a) CC νe and (b)
CC νµ selections.

the reconstructed neutrino energy spectra in the inclusive CC νe and CC νµ selections are1261

shown in figure 32.1262

As shown in figure 28, cross section uncertainties provide the largest contribution to our1263

model-based systematics. Flux uncertainties are substantial as well; they are roughly half1264

the size of cross section uncertainties at lower energies and larger at higher energies. Hadron1265

re-interaction systematics contribute very little to our overall uncertainty.1266

D. Results1267

The performance of the inclusive CC νe and CC νµ selections demonstrate the effec-1268

tiveness of this new CNN-based reconstruction. Our predicted selection efficiencies and1269

purities outperform PRD 105:112005 [17], the highest-efficiency result previously published1270

by MicroBooNE. This comparison is shown in table VI.1271

For the inclusive CC νe selection, our deep-learning based reconstruction provides signif-1272

icantly higher predicted purities (91% compared to 82%) and efficiencies (57% compared to1273

46%). This amounts to a predicted 24% increase in the number of CC νe events selected1274

with significantly lower background. As shown in figure 33a, an improvement in efficiency is1275

achieved across all true neutrino energies (except in the lowest 100-200 MeV bin, in which1276

there is no statistically significant difference). For the inclusive CC νµ selection, we achieve1277

the same overall efficiency as PRD 105:112005 but with a reduced background (purity of1278
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96% compared to 92% from PRD 105:112005). However, as shown in figure 33b, the two1279

analyses provide different efficiencies at different neutrino energies, with our reconstruction1280

yielding a higher efficiency below 1 GeV and the analysis of PRD 105:112005 providing a1281

higher efficiency above 1.5 GeV.1282

DL Reco PRD 105:112005

CC νe Selection Efficiency 57% 46%

CC νe Selection Purity 91% 82%

CC νµ Selection Efficiency 68% 68%

CC νµ Selection Purity 96% 92%

Table VI: Inclusive CC νe and CC νµ selection results for our deep-learning-based
reconstruction and PRD 105:112005 [17].

(a) (b)

Figure 33: The predicted CC νe (a) and CC νµ (b) selection efficiency of our
reconstruction and selection (DL Gen2) and that of PRD 105:112005 (Wire-Cell) [17] as a
function of true neutrino energy.

In sections IIIA and III B, we showed predicted (using MC neutrino simulations plus1283

data cosmic-ray background) and MicroBooNE open data distributions of reconstructed1284

neutrino energy for selected inclusive CC νe and CC νµ events. Figures 34 and 35 show1285

the same data/MC comparisons for reconstructed primary lepton momentum and cos(θl)1286

(where θl is the angle between the primary lepton and the beam). Also included are the1287

reconstructed neutrino energy distributions, along with predicted purity and efficiency as1288

a function of reconstructed neutrino energies. For both selections, purities are high for all1289
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(a) (b)

(c) (d)

Figure 34: Predicted and MicroBooNE open data distributions of events passing the CC νe
selection in (a) reconstructed neutrino energy, (c) reconstructed electron momentum, and
(d) reconstructed cos(θe), where θe is the angle between the reconstructed electron shower
and the beam. (b): The predicted efficiency (from MC) and purity (from MC and off-beam
cosmic background data) of the CC νe selection as a function of reconstructed neutrino
energy.

energies, whereas efficiency drops more dramatically, as expected, at low energies where it1290

is more difficult to separate signal from background.1291

To assess the consistency between the predictions made for these distributions with our1292

deep-learning based reconstruction framework and observations from the MicroBooNE open1293

data set, we employ a χ2 goodness-of-fit test using the combined Neyman-Pearson (CNP)1294

χ2 test statistic [36] with the covariance matrix formalism:1295

χ2 = (M − µ)T · V −1
full · (M − µ) (6)

where M and µ are vectors of the observed and predicted event counts in each bin and Vfull1296
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(a) (b)

(c) (d)

Figure 35: Predicted and MicroBooNE open data distributions of events passing the CC νµ
selection in (a) reconstructed neutrino energy, (c) reconstructed muon momentum, and (d)
reconstructed cos(θµ), where θµ is the angle between the reconstructed muon track and the
beam. (b): The predicted efficiency (from MC) and purity (from MC and off-beam cosmic
background data) of the CC νµ selection as a function of reconstructed neutrino energy.

is the full covariance matrix in the CNP method:1297

Vfull = V stat
CNP + V stat

pred + V sys
flux + V sys

xsec + V sys
det (7)

This covariance matrix is constructed from the flux and neutrino-argon and hadron-argon1298

cross section covariance matrices (V sys
flux and V sys

xsec) discussed in section III C 2, the detector1299

systematics covariance matrix (V sys
det ) from section III C 1, a diagonal matrix containing the1300

variance in each bin from uncertainties arising from the finite statistics used to make predic-1301

tions (V stat
pred), and a diagonal matrix containing the CNP terms: (V stat

CNP)ii = 3/(1/Mi+2/µi).1302

As discussed in section III C 1, we altered the binning used to calculate V sys
det (and therefore1303
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changed its dimensions) for the reconstructed neutrino energy and muon momentum dis-1304

tributions of the CC νµ selection by combining high energy/momentum bins. Here, when1305

constructing V sys
det in Eq. 7 for those distributions, we estimate the covariance between in-1306

dividual bins in the overflow region and bin i as the covariance between the overflow bin1307

and bin i. This maintains the approach of section III C 1 to (temporarily, pending process-1308

ing of higher statistics detector variation samples) address low statistics with lower-bound1309

estimates that provide a stricter test for data/MC consistency tests.1310

By comparing the χ2 from Eq. 6 with the distribution of a χ2 with N degrees of freedom1311

(where N is the number of bins), we can calculate a p-value for our observations (the prob-1312

ability of seeing the observed or a more extreme fluctuation) and assess data / Monte Carlo1313

consistency. However, the Gaussian assumptions used in the covariance matrix formalism1314

followed here break down at low statistics, where much of the Gaussian probability distri-1315

butions fall into the un-physical region of negative bin counts. While this is not an issue for1316

the CC νµ selection where predicted bin counts are sufficiently high across all bins of each1317

distribution, in the CC νe selection, predicted bin counts are almost all below 10 and fall1318

below 1 in the tails. To make the CC νe statistics closer to the Gaussian assumption, we1319

combine all bins with a predicted event count below 2 for these goodness-of-fit tests. The re-1320

binned CC νe distributions and the full covariance matrices (equation 7) for all distributions1321

in both selections can be found in appendix A.1322

The χ2 and associated p-values calculated with this method for the reconstructed neutrino1323

energy, lepton momentum, and lepton cos(θ) distributions for both selections is shown in1324

table VII. All p-values are high: close to or above 90% for most tests and no lower than1325

24.4%. This indicates that the open data observations are consistent with our predictions1326

and is evidence, for the kinematic variables considered, of a lack of any concerning data /1327

Monte Carlo domain shift introduced by our deep-learning based reconstruction algorithms.1328

CC νe
Selection,
Eν Binning

CC νe
Selection,
pe− Binning

CC νe
Selection,

cos(θ) Binning

CC νµ
Selection,
Eν Binning

CC νµ
Selection,
pµ Binning

CC νµ
Selection,

cos(θ) Binning

χ2/DOF 3.80/9 3.06/8 5.18/6 25.08/21 11.91/21 9.73/16

p value 0.924 0.931 0.521 0.244 0.942 0.880

Table VII: Goodness of fit test results: χ2 / degrees of freedom and associated p values for
the reconstructed neutrino energy, lepton momentum, and lepton cos(θ) distributions in
the inclusive CC νe and CC νµ selections.
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E. Results of Data and MC comparison using Open Data Sample1329

To further test our predicted inclusive CC νe selection results and comparison to PRD1330

105:112005 [17], we manually hand scanned all MicroBooNE run1 open data events selected1331

by our analysis and that of PRD 105:112005, classifying each as either CC νe or background.1332

This open data set contains 4.4·1019 POT of run 1 data.1333

In the analysis of PRD 105:112005, 40 events were selected, of which (according to our1334

hand scans) 37 or 38 were true CC νe interactions. In our analysis, 44 events were selected,1335

of which 42 or 43 were true CC νe interactions (there is some uncertainty in the hand scan1336

classifications). These results, along with comparisons to predictions made in the previous1337

section, are summarized in table VIII.1338

DL Reco Data
Hand Scan
Estimate

DL Reco MC
Prediction

PRD 105:112005

Data Hand
Scan Estimate

PRD 105:112005

MC Prediction

Total Events 44 48.3 40 41.2

Signal Count 42 - 43 44.0 37 - 38 33.8

Background Count 1 - 2 4.3 2 - 3 7.3

Purity 95% - 98% 91% 93% - 95% 82%

Table VIII: Hand scan results of inclusive CC νe events selected from the open data sample
by our deep-learning-based reconstruction and PRD 105:112005 [17].

These results are generally consistent with our expectations, given the large statistical1339

uncertainties with these small numbers of events. With 4 - 6 more probable signal events1340

selected by our framework, these results support our prediction of an increase (compared1341

to PRD 105:112005) in inclusive CC νe selection efficiency. Additionally, while the total1342

number of selected probable signal events was higher by 4 - 6, there were 11 probable signal1343

events selected by our framework that were not present in the analysis of PRD 105:1120051344

and 6 probable signal events found in PRD 105:112005 that did not appear in our selection.1345

This indicates that combining the events selected by our framework and PRD 105:1120051346

(which utilizes the Wire-Cell reconstruction [17–19]) could yield an even more substantial1347

improvement in efficiency, a promising avenue for future work.1348

The three hand-scan-classified CC νe events lowest in reconstructed neutrino energy are1349

shown in figures 36 - 38.1350
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Figure 36: Wire plane images of a probable CC νe event selected by our analysis from the
MicroBooNE open data set.

Figure 37: Wire plane images of a probable CC νe event selected by our analysis from the
MicroBooNE open data set.

IV. DISCUSSION1351

A new reconstruction workflow has been developed that utilizes three convolutional neural1352

networks to perform pattern recognition relatively early in the reconstruction workflow. This1353

leverages the powerful ability of CNNs to recognize features in low-level data, specifically,1354

the image-like data produced by the LArTPC wire planes. The many outputs and the ability1355

to partition the spacepoints into topological classes greatly simplified the reconstruction of1356

3D spacepoints. Though this is also in part due to the energy range of interactions for1357
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Figure 38: Wire plane images of a probable CC νe event selected by our analysis from the
MicroBooNE open data set.

MicroBooNE. With median energies below 1 GeV, the final state particles emerging from1358

neutrino interactions often do not overlap. Final state particles more often than not emerge1359

from the vertex at well-separated angles – which adds to the advantage working in 3D space1360

has for clustering. However, we believe the utility of feature recognition by 2D CNNs are on1361

display given the modest complexity of the non-DL algorithms implemented in this work.1362

Furthermore, the particular use of the LArPID CNN mitigates the impact of mistakes made1363

in the 3D reconstruction. This comes from the use of information about both the particle1364

under consideration and the entire image of the interaction. We believe one lesson that1365

should carry over to analyses being built for future LArTPCs like SBND and DUNE, is that1366

access to the 2D image information will have much utility.1367

The quality of the reconstruction and the utility of the CNN outputs were tested through1368

the exercise of selecting inclusive charged-current νµ and νe interactions. We looked for1369

potentially large, show-stopping domain shift effects by testing the selection on the Micro-1370

BooNE open dataset. The cuts employed are deceptively simple in that they are flat cuts on1371

particle ID scores or on the numbers of certain particles. They are deceptively simple, be-1372

cause in other MicroBooNE selections BDTs, using a collection of kinematic observables and1373

spatial patterns, was often required to reach the best efficiency and/or purity. However, the1374

CNNS used in this work, we conjecture, likely utilizes the same kinematic correlations ex-1375

tracted directly from the 2D images and contributes to the improvement in νe-CC efficiency1376

across a large range of true neutrino energies.1377
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Interestingly, this improvement in the νe-CC selection constrasts with the roughly equal1378

performance between this work and the inclusive νµ-CC selection of PRD 105:112005 [17]1379

utilizing the Wire-Cell reconstruction. In the CC νe selection, we leverage the LArPID1380

scores to further reduce backgrounds by vetoing events with an identified muon or cutting1381

events with sufficient evidence that the primary shower either derived from charged pions1382

or is a photon. For the inclusive CCνµ event selection, there was not a set of single particles1383

associated strongly with potential background interactions. Instead, improvement in the1384

signal acceptance or rejection of background will likely need to come through the use of1385

correlations between particle kinematics or tuning of cuts in different regions of kinematic1386

phase space. We leave explorations to improve the selections using the reconstructed particle1387

kinematics to future work. For now, our conjecture is that the inclusive CCνµ selection is1388

primarily defined by the upstream Wire-Cell cosmic tagging algorithms. The fact that our1389

efficiency and purity are similar possibly reflects a similar ability to identify the muon within1390

the in-time charge cluster.1391

Further conjecture is based in part on the last two cuts applied in the νe-CC selection.1392

These cuts can be interpreted as examples of how CNNs utilize fine image details to great1393

effect. The last two cuts both target the separation of primary electrons from secondary1394

electrons coming from the decay of a low-energy muon or charged pion. In these cases, the1395

information to complete the tasks is located in small regions of the image: the beginning of1396

showers and around the vertex. The utilization of this information is what we hypothesize1397

to be the source of the efficiency and purity gains. For example, there can be difficult edges1398

cases when estimating dE/dx for particle ID. One such case are the potential presence of1399

additional particles near the vertex. These particles can be of a low enough energy such1400

that they are missed by the reconstruction, but high enough in energy to impact estimates1401

like the dE/dx for identified trajectories. Specific scenarios include a short co-linear proton1402

or a localized region of high energy deposition from a Brem photon emitted early in the1403

trunk of the shower. Both can push a dE/dx estimate to mis-identify an electron shower1404

as photon. We conjecture that the LArPID network is able to learn a set of image features1405

that can detect these edge cases and influence the electron PID. Demonstrating this is one1406

area for future study. But one piece of circumstantial evidence is the lack of dependence1407

on the energy scale of the neutrino interaction. In this hypothesis, the occurrence of such1408

scenarios are broadly distributed across the range of neutrino energies. The possible lack of1409
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comparable scenarios for identifying muons would then explain why improvements are not1410

observed for the νµ selection.1411

Inspecting the distributions of the LArPID score for the νe selection in figure 26, the most1412

similar distribution to the CCnumu events that remain are the NCnumu events. Cosmic1413

interactions also peak in a similar region. As discussed above, the electron confidence score1414

was developed to ID interactions with evidence that the candidate electron shower is actually1415

a secondary electron from a decay muon or charged pion. For NC events with true neutrino1416

energies near the peak of 800 MeV, the final state momentum for the charged pions is1417

likely small. Alternatively, a charged pion with an early decay in flight leads to what1418

is now easily misinterpretable as an event with a primary muon in the final state. But1419

in addition to such visual evidence, the LArPID CNN likely has learned to use particle1420

kinematics better separate CC νe events from the various backgrounds. Such kinematic1421

information is also the kind of information that would be effectively exploited by a BDT-1422

based selection – as was used in the 2022 inclusive search of PRD 105:112005 [17]. At the1423

high-level observable distributions studied, we do not find evidence that the CNN-based1424

reconstruction and selection are more sensitive to argon-interaction modeling uncertainties1425

when compared to past analyses. But future work will focus on how to dig deeper into this1426

potential bias.1427

However, as with all machine learning methods, we must vet the CNNs presumed ability1428

to correlate latent physical quantities or scenarios to distributions over possible images.1429

The goal of this work is to report on the completed workflow, and provide evidence of its1430

competitiveness to past analyses. But more work is ongoing to evaluate the robustness of1431

this analysis centered on CNNs. The model learning to recognize the features discussed1432

above derives from training on our simulation data. This data is produced using models1433

of the MicroBooNE detector and physics like the ionization produced by charged particles.1434

Though not perfect, one might hypothesize that the level of detector mis-modeling here is1435

at a manageable level. This is supported by the level of change in the number of selected1436

events. Even with the higher bound estimates, which we believe are likely due to low MC1437

statistics, the uncertainties from detector-related effects are similar to the analysis of PRD1438

105:112005 [17]. Future work can also be done to directly address certain aspects of this1439

type of domain shift such as adversarial training.1440

While the gains in the νe might come from what has been discussed, the context im-1441
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ages also allow the use of correlations between particle frequency and particle kinematics.1442

The underlying correlations in the training data, in this case, come from neutrino-argon1443

interaction modeling, which has uncertainties larger relative to the physics discussed before.1444

Future work will aim at understanding the degradation of performance of the LArPID net-1445

work when confronted with images that contain particles with kinematic correlations some1446

distance outside of the support of the training data. This means that wildly out-of-domain1447

examples could simply be ignored by the models. Developments in anomaly detection are1448

one of several directions to research how to improve model robustness or detect issues re-1449

lated to exotic final states or unusual particle kinematics. There is also the area of domain1450

adaption which aims to find ways to improve robustness.1451

CNN models, such as the LArMatch keypoint model, will also be impacted by the use1452

of training images simulating a LArTPC at the surface. In such a detector, there will be a1453

high rate of cosmic interactions in each image. For MicroBooNE, this was approximately1454

10-15 interactions. Generally, our cosmic simulations left more interactions per image than1455

was seen in the data. Mismodeling cosmic interaction rates are important for several back-1456

grounds, in particular to interactions with low-energy showers. Such backgrounds include1457

stopping muons entering near the cathode and leaving a short track and Michel electron,1458

entering photons, and those produced from hadronic interactions, e.g. from the decay of1459

neutral pions. As a potential impact, the neutrino vertex finder scores in this context could1460

be sensitive to the relative rate of neutrino-induced and cosmogenic single-shower events.1461

Another topic of discussion is what the potential impact this work might have in the1462

future for both DL and non-DL reconstruction in LArTPCs. For one, the LArPID strategy1463

of using contextual information around a defined cluster is readily adaptable to existing1464

MicroBooNE Pandora and Wire-Cell analyses. One might speculate that the differences in1465

what amounts to the LArPID image pre-processing step for the particle cluster image will1466

have a limited impact on the LArPID behavior. Future work includes plans to investigate1467

LArPID integration into these existing workflows.1468

Many of the hand-engineered algorithms in this work are very simple in their core ap-1469

proaches, but might require heuristics to tune their behaviors and/or handle edge cases.1470

This leads to several parameters per algorithm and an overall large number of parameters1471

affecting the behavior of the reconstruction. Such parameters for each algorithm were tuned1472

during development on a relatively small MC sample size, O(100) events, in order to iter-1473
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ate and tune these parameters on a day-length time-scale. In contrast, for the DL-based1474

reconstruction framework in Ref. [11] (referred to as “mlreco3d”), these algorithms have1475

ML-based counterparts which one might expect to perform better just due to the simple1476

fact that the algorithms are learned by optimizing them over the entire available training1477

data. The mlreco3d framework centers around a 3D voxel representation of the LArTPC1478

data, similar to the use of spacepoints in this work. In particular, the task of forming1479

subclusters and then collecting them into particle candidates is addressed through the use1480

of graph neural networks (GNNs). GNNs are likely much more accurate than our shower1481

reconstruction, which is merely a simple cone-based aggregator. Indeed, the purity versus1482

completion plots for the electron clusters are the least accurate for our workflow. Similarly,1483

in mlreco3d associations of particle candidates to potential neutrino interactions are also1484

done with graphs. Furthermore, mlreco3d’s determination of keypoints and voxel-wise par-1485

ticle labels make use of the 3D structure in a more direct way than in LArMatch, which1486

relies only on 2D image features correlated across the wire planes.1487

In contrast to the 3D spacepoint algorithms, the CNN components in our work would1488

be the component that would best integrate with a fully ML framework such as mlreco3d.1489

Indeed, the LArMatch real/ghost classifier was developed to provide a CNN-based pre-1490

processing step leading into the mlreco3d pipeline. One direction is to investigate if im-1491

provements could be made by injecting the spacepoint feature vectors into key parts of the1492

mlreco3d framework. Because the pipeline fully leaves behind the 2D low-level data, one1493

might believe that LArMatch’s image feature vector can be used to preserve useful details1494

otherwise lost when moving the representation of the data from 2D images into 3D voxels.1495

Furthermore, one would also expect that individual particle clustering will not be perfect.1496

And, therefore, a LArPID-like stage will be useful in similar ways to the reconstruction and1497

selection described in this work.1498

V. CONCLUSIONS1499

This work represents a milestone in the development of ML tools for LArTPC analysis.1500

We demonstrate – for the first time on real LArTPC data – a deep-learning based generic1501

neutrino interaction reconstruction framework that is competitive with the current state-1502

of-the-art: The inclusive CC νe and CC νµ selections obtained with the outputs of our1503
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reconstruction compare favorably to the highest-efficiency results previously published by1504

MicroBooNE [17], with reduced backgrounds and a predicted 24% increase in the number1505

of selected CC νe events. Hand scans of selected CC νe events from a small MicroBooNE1506

open data set are consistent with these predictions. These results demonstrate the power1507

of CNNs to leverage the full set of information provided in LArTPC wire-plane images1508

at multiple stages of the framework: in low-level reconstruction of vertices and 3D space1509

points (LArMatch), tagging pixels as track or shower like to aid in downstream clustering1510

algorithms (SSNet), and analyzing reconstructed 3D prongs with the aid of full wire-plane1511

images to fold in-context information that may have been lost by inaccuracies in upstream1512

algorithms (LArPID).1513

A possible downside of our approach stems from the black-box nature of these deep1514

networks and their potential to introduce biases from the use of supervised learning on sim-1515

ulated data. While a more thorough investigation of network-based systematic uncertainties1516

and model interpretation studies will be the subject of future work, we have demonstrated1517

that simulated MC distributions of high-level reconstructed kinematic variables for selected1518

charged-current neutrino interactions are consistent with data. This provides evidence of1519

the robustness of our framework and a lack of highly significant data/MC domain shifts1520

introduced by the use of CNNs trained on simulated data.1521

These results show promise for the deep-learning based reconstruction tools developed1522

here to improve the sensitivity of LArTPC physics analyses. Future studies will employ this1523

reconstruction framework in cross-section measurements and new physics searches. In the1524

near term, individual tools within the framework could be quickly integrated into alternative1525

reconstruction packages. The LArPID network, for example, could easily be run over 3D1526

tracks and showers reconstructed by Wire-Cell or other frameworks. As the use of such tools1527

in high energy physics analyses proliferates, this work contributes towards understanding the1528

power and robustness of computer vision techniques when applied to LArTPC neutrino data.1529

It also points towards the improvements these methods can make on the physics that will1530

come out of future LArTPC experiments, specifically from the short-baseline experiments1531

over the next few years.1532
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Appendix A: Additional distributions for data vs expectation comparisons1650

In this appendix, we show the re-binned kinematic variable distributions for the CC νe1651

selection (figure 39) and the full covariance matrices (figure 40) used for the χ2 goodness of1652

fit tests discussed in section IIID.1653

(a)

(b) (c)

Figure 39: Predicted and MicroBooNE open data distributions, with the binning used in
the χ2 goodness of fit tests of section IIID, of events passing the CC νe selection binned in
(a) reconstructed neutrino energy, (b) reconstructed electron momentum, and (c)
reconstructed cos(θe), where θe is the angle between the reconstructed electron shower and
the beam.
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(a) (b)

(c) (d)

(e) (f)

Figure 40: The full fractional covariance matrices used in the χ2 goodness of fit tests from
section IIID.
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