
Supplemental Material

The following is supplemental material expanding
upon the primary text presented in ”Search for an
anomalous excess of charged-current quasi-elastic νe in-
teractions with the MicroBooNE experiment using Deep-
Learning-based reconstruction.” Each section below lists
the section of the primary text that is most relevant.

I. FURTHER DISCUSSION OF THE BDT
ENSEMBLE

This section provides supplementary information re-
lated to Secs. VI.A and VI.B of the primary text. We
have performed a number of tests with the purpose of
validating the performance of the BDT ensemble. We
summarize the results of these tests in this section.

We first examined the signal selection power of a BDT
ensemble trained on simulated events from a given Run
period when used to infer on simulated events from a dif-
ferent Run period. This is useful for two reasons. First,
it provides a method for testing the ensemble on events
that were in neither the training nor the validation sam-
ple of the constituent BDTs. Testing on a sample in-
dependent of the validation sample is important because
the BDT training was halted when the classification error
on the validation set didn’t improve after 50 training iter-
ations. Second, it tests the impact of removing training
events from the MC prediction. When using the BDT
ensemble of a given Run period to evaluate the signal
likelihood of events from that run period, one must re-
move events which appeared in the training sample of
each constituent BDT. In this study we use the BDT en-
semble trained on run period 2 to evaluate simulated νe
events from Run period 3 and vice versa, so one does not
need to remove training events. Figures 1 and 2 show
the results of this Run period swap study. As one can
see, the differences between the selection using the cor-
rect and incorrect Run period ensemble are small. The
correct run period performs slightly better, as expected
due to small differences in the detector status specific to
each run period. However, the relatively small change
in νe selection efficiency suggests that the BDT ensem-
ble is able to perform well on simulated events that do
not appear in either the training or validation sample of
constituent BDTs.

Next, we investigated the impact of using only a subset
of the BDTs in the ensemble to calculate the average
BDT score of an event. This is relevant because each
BDT in the ensemble is trained on a specific subset of
the full simulation. In order to avoid bias, one must omit
BDTs that contained a given event in the training sample
when calculating the average BDT score for that event.
However, this analysis uses all 20 BDTs in the ensemble
to calculate the average BDT score of events in the data.
Therefore, to verify that comparisons between data and

FIG. 1: The predicted νe event rate in Run period 2
using the Run period 2 ensemble (blue) and the Run
period 3 ensemble (orange).

simulation are robust, one needs to ensure that removing
BDTs from the ensemble does not significantly bias the
average score calculation.

To this end, consider Sn to be the 1e1p BDT ensemble
average score after removing n BDTs from the ensemble.
For events in data, the BDT score is S0 while for simu-
lated events, the BDT score is Sn for some n ∈ {1, ..., 20}.
Figs. 3 and 4 show the fractional difference (Sn−S0)/S0

as a function of the number of omitted BDTs n over
signal-like (BDT score > 0.95) events in the simulation
from Run period 2 and Run period 3, respectively. As
in the previous study, in order to avoid bias from BDT
training we use the BDT ensemble trained on Run period
2 to evaluate the signal likelihood of simulation events
from Run period 3 and vice versa. The data points and
error bars in Figs. 3 and 4 indicate the average and stan-
dard deviation of the fractional difference over the sim-
ulation sample, respectively. The red histograms show
the actual distribution of omitted BDTs over the simula-
tion from each Run period. One can see that the average
BDT score does not exhibit significant bias upon remov-
ing BDTs from the calculation. Also, the fractional dif-
ference only becomes > 1% when removing & 18 BDTs
from the calculation. This only happens for << 1% of
simulated events, as expected.
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FIG. 2: The predicted νe event rate in Run period 3
using the Run period 3 ensemble (blue) and the Run
period 2 ensemble (orange).

FIG. 3: The fractional difference in average BDT score
(Sn − S0)/S0 as a function of the number of omitted
BDTs n over the simulation from Run period 2. The
data points and error bars indicate the average and
standard deviation of the fractional difference over the
simulation sample, respectively. The red histogram
shows the actual distribution of the number of omitted
BDTs over the Run period 2 simulation sample. Scores
are calculated using the Run period 3 BDT ensemble.

FIG. 4: The fractional difference in average BDT score
(Sn − S0)/S0 as a function of the number of omitted
BDTs n over the simulation from Run period 3. The
data points and error bars indicate the average and
standard deviation of the fractional difference over the
simulation sample, respectively. The red histogram
shows the actual distribution of the number of omitted
BDTs over the Run period 3 simulation sample. Scores
are calculated using the Run period 2 BDT ensemble.
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II. FURTHER DISCUSSION ON
BACKGROUNDS TO THE ANALYSIS

This section provides supplementary information re-
lated to Sec. VI.A.3 of the primary text. In this sec-
tion we discuss the main background modes to the νe
CCQE 1e1p analysis. These modes comprise the total
background prediction which we fit to a Landau+linear
function, as described in Sec. VI.A.3 of the primary text.
The background modes include but are not limited to:

• νe charged-current interactions producing more
than 1 proton in the final state, where the primary
proton track exhibits CCQE-like kinematics.

• νµ interactions with a π0 in the final state, where
one of the photon showers from the π0 decay is
mistaken for an electron.

• Events with a vertex > 5 cm away from a true
neutrino vertex, which can happen when a pho-
ton shower from a π0 decay falls near a cosmogenic
muon, reconstructing a good one-track-one-shower
event, or µ± → e± decays, in which the end of the
muon track is mistaken for a proton. These events
are referred to as “off-vertex” events.

We now give more details on the Landau+linear prob-
ability distribution function (PDF) used to model the
background contribution. The predicted background
spectrum in each reconstructed neutrino energy bin
f(Ei) is generated by integrating the Landau+linear
PDF p(E) within that bin. Specifically,

p(E) = exp

[
−(E′ + e−E

′
)

2

]
+ aE,

E′ = (E − µ)/σ,

f(Ei) =

∫ Ei+δEi

Ei−δEi

p(E)dE,

(1)

where µ and σ are the center and width of the Moyal
approximation of the Landau function [1], a is the linear
slope parameter, Ei is the center of the i’th energy bin,
and δEi is half of the bin width.

As described in Sec. VI.A.3, we estimate the overall
background rate by fitting the BDT score distribution of
simulated background events to a linear PDF p̃(x). The
integral of this PDF gives total expected background rate
f̃(x) at a BDT score cutoff at x:

p̃(x) = mx+ b f̃(x) =

∫ 1

x

p̃(x)dx (2)

where m and b are the slope and bias parameter for the
BDT score distribution, respectively.

This procedure is intended to harness higher-statistics
information on the background shape from a looser re-
quirement on the 1e1p BDT score. This gives the back-
ground prediction shown in Figs. 4 and 16 of the primary

Interaction Channel Predicted Rate
νµ resonant π0 1.26
νµ resonant π± 0.21
νµ CCQE 0.14
νµ other 0.19

Off-vertex 0.93
Event Topology Predicted Rate

1µNπ0 0.57
0µNπ0 1.09
1µ1p 0.14

Off-vertex 0.93

TABLE I: Breakdown of events in the “background”
category of Fig. 4 of the primary text over the range
200 < Eν < 1200 MeV. The events are partitioned both
by the interaction channel and the event topology. The
prediction here comes directly from the simulation and
does not incorporate the Landau+linear fit described in
Sec. VI.A.3.

text. However, the fit does not retain information on the
predicted rate of specific background channels, such as
the νµ π

0 and off-vertex events mentioned above.

In Table I we give a breakdown of events in the “back-
ground” category of Fig. 4 of the primary text by their
interaction channel and event topology. Note that these
predicted rates come directly from the simulation rather
than the Landau+linear fit, so the total predicted rate
here (2.7) differs slightly from the total predicted rate
using the background fit (3.2). However, this breakdown
is illustrative of the relative predicted rates of different
background channels. In Table I one can see that νµ
resonant π0 events are the most common background in-
teraction channel, followed by off-vertex events. One can
also see that events with a π0 in the final state are the
dominant background topology.

III. COMPARISON BETWEEN DATA AND
SIMULATION IN ADDITIONAL
RECONSTRUCTED VARIABLES

This section provides supplementary information re-
lated to Secs. VI and IX of the primary text. In this
section, we provide a suite of plots comparing data and
simulation for 36 different variables relevant to this anal-
ysis. These plots are shown in Figs. 5 to 35. The back-
ground fitting procedure described in Sec. VI.A.3 of the
primary text is not applied here. The predictions shown
in the stacked histograms in these plots come directly
from the GENIE-based simulation sample. Additionally,
the systematic uncertainties shown here do not include
the 1µ1p CCQE constraint. In general, good agreement
is observed between prediction and data across all vari-
ables.
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FIG. 5: Comparison between data and simulation in the

αT = cos−1

(
−
~P lT · ~PT
|~P lT ||~PT |

)
distribution.

FIG. 6: Comparison between data and simulation in the
Bjorken X distribution (in the nucleon rest frame).

FIG. 7: Comparison between data and simulation in the
Bjorken Y distribution (in the nucleon rest frame).

FIG. 8: Comparison between data and simulation in the
distribution of charge near the trunk of the shower.

FIG. 9: Comparison between data and simulation in the
EQE−pν distribution.
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FIG. 10: Comparison between data and simulation of
the ratio of difference in ionization in the trunk of
particles to the sum, called the η distribution.

FIG. 11: Comparison between data and simulation in
the φe distribution.

FIG. 12: Comparison between data and simulation in
the lepton track length distribution.

FIG. 13: Comparison between data and simulation in
the proton track length distribution.

FIG. 14: Comparison between data and simulation in
the maximum shower fraction distribution.

FIG. 15: Comparison between data and simulation in
the minimum shower fraction distribution.
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FIG. 16: Comparison between data and simulation in
the distribution of the MPID electron interaction score
on the Y-view plane.

FIG. 17: Comparison between data and simulation in
the distribution of the MPID muon interaction score on
the Y-view plane.

FIG. 18: Comparison between data and simulation in
the distribution of the MPID proton interaction score
on the Y-view plane.

FIG. 19: Comparison between data and simulation in
the opening angle distribution.

FIG. 20: Comparison between data and simulation in
the |φe − φp| distribution.
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FIG. 21: Comparison between data and simulation in
the Ep distribution.

FIG. 22: Comparison between data and simulation in
the φp distribution.

FIG. 23: Comparison between data and simulation in
the θp distribution.

FIG. 24: Comparison between data and simulation in
the total transverse momentum distribution.

FIG. 25: Comparison between data and simulation in
the transverse momentum ratio distribution.

FIG. 26: Comparison between data and simulation in
the pz − Eν distribution.
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FIG. 27: Comparison between data and simulation in
the Q0 distribution.

FIG. 28: Comparison between data and simulation in
the Q3 distribution.

FIG. 29: Comparison between data and simulation in
the shower consistency distribution.

FIG. 30: Comparison between data and simulation in
the shower fraction distribution.

FIG. 31: Comparison between data and simulation in
the quasi-elastic consistency distribution,√

(Eν − EQE−pν )2 + (Eν − EQE−`ν )2 + (EQE−`ν − EQE−pν )2,

where Eν is energy based on range.
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FIG. 32: Comparison between data and simulation in
the θe + θp distribution.

FIG. 33: Comparison between data and simulation in
the X vertex position distribution.

FIG. 34: Comparison between data and simulation in
the Y vertex position distribution.

FIG. 35: Comparison between data and simulation in
the Z vertex position distribution.

IV. THE 1γ1p VERTEX SAMPLE

This section provides supplementary information re-
lated to Sec. VII of the primary text. We can obtain
an enhanced sample of 1γ1p vertices from the π0 sample
using a MPID muon interaction score < 0.1, thereby re-
moving the majority of CCπ0 events. This vertex topol-
ogy matches the 1e1p topology and, therefore, permits
a useful test of data-to-simulation agreement. First we
look at the proton energy and the energy of the lead-
ing shower. The proton is the track reconstructed in
the event, since events with muon tracks were largely re-
moved. π0 weights discussed above are applied to the MC
simulation, and only MC simulation statistical errors are
used. We see excellent data/prediction agreement for
both the proton Fig. 36, and leading shower energy in
Fig. 37.

Next, treating the leading shower as the electron, ne-
glecting the second shower, and using the proton, the
energy of the neutrino is reconstructed as though it were
a 1e1p event. The result can be seen in Fig. 38. There
is agreement across the full energy spectrum. This study
gives us confidence in our ability to reconstruct the en-
ergy of low-energy 1e1p events.
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FIG. 36: The reconstructed proton energy for events
passing all selection criteria (treating the event as a
1e1p event). The simulation POT has been normalized
to the total POT and then re-weighted in true π0

momentum (middle panel). In wPred, the pi0 weights
have been added to the prediction (red dashed line and
bottom panel).

FIG. 37: The calculated leading shower energy for
events passing all selection criteria (treating the event
as a 1e1p event). The simulation POT has been
normalized to the total POT and then re-weighted in
true π0 momentum (middle panel). In wPred, the pi0
weights have been added to the prediction (red dashed
line and bottom panel).

FIG. 38: The calculated neutrino energy for events
passing all selection criteria (treating the event as a
1e1p event). The simulation POT has been normalized
to the total POT and then re-weighted in true π0

momentum (middle panel). In wPred, the pi0 weights
have been added to the prediction (red dashed line and
bottom panel).

V. ADDITIONAL COVARIANCE MATRICES

This section provides supplementary information re-
lated to Sec. VIII of the primary text. In this section, we
provide a suite of plots showing additional fractional co-
variance and correlation matrices. In particular, Figs. 39
to 42 show the matrices coming from the flux, neutrino
interaction, hadron re-interaction, and detector system-
atic uncertainties discussed in the text. They each show
both the 1e1p and 1µ1p analysis bins along with the co-
variances between them. Additionally, Fig. 43 shows the
matrices for the 1e1p prediction after applying the 1µ1p
constraint.
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(a) Fractional covariance matrix (b) Correlation matrix

FIG. 39: Fractional covariance (a) and correlation (b) matrices for the flux uncertainties for the 1e1p and 1µ1p
selections. The 1e1p events are on the lower-left and are binned from 200–1200 MeV in 100 MeV bins. The 1µ1p
events are on the upper-right and are binned from 250–1200 MeV in 50 MeV bins. The solid bold lines indicate the
boundary between the 1e1p and 1µ1p selections.

(a) Fractional covariance matrix (b) Correlation matrix

FIG. 40: Fractional covariance (a) and correlation (b) matrices for neutrino interaction uncertainties for the 1e1p
and 1µ1p selections. The 1e1p events are on the lower-left and are binned from 200–1200 MeV in 100 MeV bins. The
1µ1p events are on the upper-right and are binned from 250–1200 MeV in 50 MeV bins. The solid bold lines indicate
the boundary between the 1e1p and 1µ1p selections.

[1] J. E. Moyal, Journal of the Royal Statistical So-
ciety: Series B (Methodological) 11, 150 (1949),

https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-
6161.1949.tb00030.x.

http://dx.doi.org/ https://doi.org/10.1111/j.2517-6161.1949.tb00030.x
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http://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1949.tb00030.x
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(a) Fractional covariance matrix (b) Correlation matrix

FIG. 41: Fractional covariance (a) and correlation (b) matrices for the hadron re-interaction uncertainties for the
1e1p and 1µ1p selections. The 1e1p events are on the lower-left and are binned from 200–1200 MeV in 100 MeV bins.
The 1µ1p events are on the upper-right and are binned from 250–1200 MeV in 50 MeV bins. The solid bold lines
indicate the boundary between the 1e1p and 1µ1p selections.

(a) Fractional covariance matrix (b) Correlation matrix

FIG. 42: Fractional covariance (a) and correlation (b) matrices for the detector uncertainties for the 1e1p and 1µ1p
selections. The 1e1p events are on the lower-left and are binned from 200–1200 MeV in 100 MeV bins. The 1µ1p
events are on the upper-right and are binned from 250–1200 MeV in 50 MeV bins. The solid bold lines indicate the
boundary between the 1e1p and 1µ1p selections.
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(a) Fractional covariance matrix (b) Correlation matrix

FIG. 43: Total fractional covariance (a) and correlation (b) matrices for the 1e1p selection after applying the 1µ1p
constraint. The 1e1p events are binned from 200–1200 MeV in 100 MeV bins.


	Supplemental Material
	Further Discussion of the BDT Ensemble
	Further Discussion on Backgrounds to the Analysis
	Comparison Between Data and Simulation in Additional Reconstructed Variables
	The 11p Vertex Sample
	Additional Covariance Matrices
	References


