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1 Introduction

MicroBooNE is a large liquid argon time projection chamber (LArTPC) on Fermilab’s
Booster Neutrino Beam (BNB). A main goal of MicroBooNE is to search for the low energy
excess (LEE) of electron like events seen by MiniBooNE. Using νµ interactions to constrain
νe systematics is a common approach in oscillation experiments, we will adopt it here as
well. This takes adantage of the high statistics νµ data and known correlations between
electron and muon neutrino fluxes and cross sections. This note provides an overview of the
selection of events with one reconstructed muon and one reconstructed proton in (µ1p) in
MicroBooNE using a Deep Learning based reconstruction. We then present comparisons be-
tween data on our simulated neutrino interaction predictions for some important kinematic
distributions. We find that in a sample of data corresponding to 4× 1019 POT, that the
data and simulation agree well in shape.

2 Overview of 1µ1p Selection

The selection is intended to isolate so called “1µ1p events”. These events form our signal
with which we will constrain the systematic uncertainties in a corresponding 1e1p selection
of events. They are defined as any muon neutrino induced event which occurred inside a
fiducial volume (defined by a rectangular prism 10 cm from the edge of the TPC active volume
edges), remains fully contained, and yields one proton and one muon in the final state. Both
particles must be energetic enough to produce clearly visible tracks, Eµ >35 MeV and Ep >
60 MeV. This topology is chosen because it provides strong handles to differentiate it from
the cosmic background, while retaining efficiency for selecting low energy interactions. In
the energy region for the expected signal, this class of events is predominantly predicted to
be charged current quasi-elastic (CCQE) events. We will hereafter refer to events satisfying
these criteria as “1µ1p signal.”

For context, we provide an overview of the Deep Learning analysis, as shown in Fig. 1.
MicroBooNE has an array of 32 PMTs that provide interaction information in parallel with
the TPC. The analysis begins with a series of optical cuts designed to eliminate events
with light patterns more consistent with only cosmic interactions than with neutrinos. The
remaining stages make use of wire plane images. We use a set of cosmic tagging routines
designed to identify charge associated with tracks that cross the active volume boundaries.
Sets of untagged remaining charge are identified as contained regions of interest (cROIs) so
long as they are matched to a reconstructed flash in the light collection system.
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The subsequent step is the first that involves a deep learning algorithm, making use of
a Semantic Segmentation Network (SSNet). This network treats each event like an image,
and identifies if each pixel in that image is track like or shower like. These algorithms and
techniques are described in detail separately[1][2]. These are the first application of such
methods in LArTPC data analysis.

The next step is to identify and reconstruct vertices and associated tracks in 3D. Vertex
seeds are first identified on each wire plane of the TPC by searching either for kinks in the
intersection of two track segments or by searching for a shower cluster intersecting a track.
If these seeds are consistent across multiple planes, a candidate vertex is generated.

The tracks and showers attached to each candidate vertex are then reconstructed in 3D
via a stochastic search algorithm that identifies 3D consistent charge clusters emanating
from the vertex. This 3D reconstruction provides the majority of the information that will
be used in event selection: track lengths, angles, etc.

Figure 1: Overview of the deep-learning-based analysis chain.

3 Selection Procedure

Our signal 1µ1p is characterized by its one muon and one proton topology. Cosmic induced
interactions in the TPC present our primary background. Secondary backgrounds come from
neutrino interactions which do not satisfy our signal criteria (e.g. multiple protons, or tracks
that exit the active volume).

We have developed the selection criteria using three samples: a sample of cosmic only data
taken from periods of no beam to characterize and benchmark cosmic rejection; a simulated
1µ1p sample, and a simulated sample containing a full spectrum of interaction modes to
characterize neutrino backgrounds. The simulated samples are overlaid with a sample of
off beam cosmics. These samples have been filtered through the upstream segments of the
chain, i.e. we are concerned, for instance, only with cosmic backgrounds that persist past
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precut, cosmic tagging, and vertexing. To extract the 1µ1p vertices from these backgrounds,
we have developed the following selection criteria which a given vertex must satisfy.

3.1 Energy Reconstrution

Several of the selection methods we will discuss involve the reconstructed energy of the
proton, muon, or neutrino. The energies deposited are obtained by using the known stopping
power in LAr to convert track lengths to their initial energies. Deciding which track is the
proton or muon is dictated by the average ionization of the tracks. The track with higher
ionization is labeled the proton.

We also have three different ways to reconstruct the neutrino energy. Range based
reconstruction uses the energy deposited by both tracks. CCQE based reconstruction uses
only one particles based energy and the angle of that particle relative to the beam direction
to estimate the energy assuming it is a pure CCQE interaction. This can be done for either
the proton or the muon. We denote these Erange

ν ,EQE−p
ν , and EQE−µ

ν respectively. They are
computed as follows

EQE−µ
ν =

1

2

2(mn −B)Eµ − ((mn −B)2 +m2
µ −m2

p)

(mn −B)− Eµ + pzµ
(1)

EQE−p
ν =

1

2

2(mn −B)Ep − ((mn −B)2 +m2
p −m2

µ)

(mn −B)− Ep + pzp
(2)

Erange
ν = Eµ + Ep +mµ + (mn −mp) +B where B = 40 MeV1 (3)

We will use these variables in the selection procedure that follows.

3.2 Initial Cuts

A given vertex must first satisfy the following cuts

1. The reconstructed vertex lies inside the fiducial volume.

2. Exactly two tracks are reconstructed.

3. The tracks show no evidence of faulty reconstruction - this is determined by the recon-
struction algorithm’s self diagnostic tools. 2

4. Tracks must be fully contained in the active volume

1 B accounts for the nuclear binding energy.
2 The 3D reconstruction has several built in diagnostics intended to flag potential failures. These include,
for example, methods to detect if a track that was being followed is becoming faint but does not abruptly
stop.
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5. We require consistency between three different initial neutrino energy reconstruction
methods. We characterize the agreement between these reconstructed kinematics by
defining the following three variables

∆pµ = EQE−p
ν − EQE−µ

ν (4)

∆range−µ = EQE−µ
ν − Erange

ν (5)

∆range−p = EQE−p
ν − Erange

ν (6)

In 3D, these form a cluster around 0 for signal, but are smeared out for various back-
grounds. We require

∆2
pµ + ∆2

range−µ + ∆2
range−p < 1 GeV2

6. We make cuts on the reconstructed transverse momentum of the interaction. We define

pT = |~p T
µ + ~p T

p | (7)

φT = cos−1
(~p T

µ · ~p T
p

p T
µ p

T
p

)
(8)

αT = cos−1
( ~pµT · ~p T

p

p T
µ p

T

)
(9)

While all three will appear in the likelihood, only pT and φT are cut. Specifically, we
require

pT < 500MeV

φT <
3π

8

7. We require the reconstructed Q2 = 2EQE−p
ν (Eµ − pµcos(θµ)) −m2

µ to be greater than
zero.

8. We finally reject events where the SSNet has identified significant shower activity in
either one of the tracks. This helps remove muon bremsstrahlung, π0 activity, and
other shower like activity.

3.3 Likelihood Selection

Once we have the set of reconstructed tracks and vertices that pass the above cuts, we
calculate variables which we will use to produce likelihood based discriminants to separate
our signal from residual background. These are motivated by a mixture of known kinematics
and shapes of νµ interactions and known common failure topologies. The variables used are:
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1. η: the difference in reconstructed dQ
dx

, normalized to sum of the reconstructed dQ
dx

. This
will be small for cosmics which have similar (MIP like) ionization on both tracks. This
will be larger for a higher ionizing proton track attached to a minimum ionizing muon.

2. The 3D Opening angle between the tracks

3. The absolute difference in track φ, i.e. |φp − φµ|

4. The sum of the track θ, i.e. θp + θµ

5. pT , as defined above

6. αT , as defined above

7. φT , as defined above

8. Bjorken x, computed as Q2

2Mpν
, ν = Erange

ν − Eµ

We produce probability distributions for cosmic vertices, signal vertices, and neutrino
background vertices using the data and MC samples discussed above. We generate two sets
of PDFs and correspondingly end up with two likelihood discriminants. One discriminates
signal from cosmic vertices (Cosmic LL), the second discriminates signal from other neu-
trino induced background vertices (NuBkg LL). The final step in selection is a cut on both
likelihood values at Cosmic LL > -3 and Neutrino Background LL (NuBkgLL) > 0

4 Data-MC Comparisons

Now that we have a selected set of 1µ1p events, we compare our prediction from simulation
and cosmic background to our data.

We show kinematic variables which are ultimately derived from 9 measured quantities:
4 angles, 2 energies, and 3 positions. As a result some correlation between plots can be
expected. These histograms are generated by running the full DL analysis and selection on a
cosmic data sample and also on a simulation + cosmic data sample. This is used to generate
a stacked prediction. The data is plotted overlaid. Here we are interested in the overall
agreement in shape between the data and prediction, and so all distributions are then unit
normalized.

The uncertainties shown are statistical. The uncertainty on the prediction is primarily
driven by the cosmic contribution.
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Figure 2: Cosmic discrimination likelihood, in the final selection 1µ1p events are selected
with cosmic LL > -3.
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Figure 3: Neutrino background discrimination likelihood, in the final selection 1µ1p events
are selected with NuBkg LL > 0.

Figure 4: Reconstructed neutrino vertex X position (drift direction).

7



Figure 5: Reconstructed neutrino vertex Y position (vertical direction).

Figure 6: Reconstructed neutrino vertex Z position (beam direction.)

8



Figure 7: Reconstructed proton kinetic energy, based on the track range.

Figure 8: Reconstructed muon kinetic energy, based on the track range.
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Figure 9: Reconstructed Proton cos(θ), θ is the angle with respect to the beam.

Figure 10: Reconstructed Muon cos(θ), θ is the angle with respect to the beam.
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Figure 11: Reconstructed Proton φ. We note that there are known detector systematic
effects which are not included in the uncertainties, but may contribute near φ ∼ 0

Figure 12: Reconstructed Muon φ.

11



Figure 13: Reconstructed Proton Track Length.

Figure 14: Reconstructed Muon Track Length.
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Figure 15: Reconstructed Proton Track’s Distance to Edge of Active TPC volume.

Figure 16: Reconstructed Muon Track’s Distance to Edge of Active TPC volume. We note
that there are systematic effects which are not included in the uncertainties which are known
to have effects near the edge of the detector.
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Figure 17: Reconstructed Transverse Variable pT .

Figure 18: Reconstructed Transverse Variable φT .
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Figure 19: Reconstructed Transverse Variable αT .

Figure 20: Reconstructed neutrino energy Erange
ν . The ranged based energies for each parti-

cle, summing, and adding in binding energy and rest mass.
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Figure 21: Reconstructed neutrino energy EQE−p
ν . The energy from the QE reconstruction

formula with the proton energy and angles.

Figure 22: Reconstructed neutrino energy EQE−µ
ν . The energy from the QE reconstruction

formula with the muon energy and angles.
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Figure 23: Reconstructed two track opening angle.

Figure 24: Reconstructed η variable, which captures the ionization asymmetry between the
two reconstructed tracks.
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4.1 Conclusion

We summarize the variables and their χ2 p-values below.

Variable χ2 p-value Variable χ2 p-value
Cosmic LL 0.865 Proton Length 0.126
NuBkg LL 0.166 Muon Length 0.219
X Position 0.593 Proton Dist. to Edge 0.203
Y Position 0.351 Muon Dist. to Edge 0.234
Z Position 0.050 pT 0.000
Proton KE 0.044 φT 0.792
Muon KE 0.198 αT 0.888

Proton cosθ 0.976 Erange
ν 0.236

Muon cosθ 0.470 EQE−p
ν 0.432

Proton φ 0.003 EQE−µ
ν 0.714

Muon φ 0.078 η 0.963
cosθopen 0.865

Table 1: Summary of χ2 p-values for each histogram

Based on the χ2 tests, there is good agreement between data and MC in the 1µ1p sample.
We observe a distribution of p-values consistent with a uniform distribution between 0.01
and 0.99 as we would anticipate under the hypothesis that the global agreement is good.

Our results indicate that the deep learning analysis is reaching sufficient maturity to begin
to implement it as the constraint on signal systematics for the low energy excess analysis.
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