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One of the primary goals of MicroBooNE is to address the existence and underlying source of the Mini-
BooNE observed Low Energy Excess (LEE). The MiniBooNE LEE is the observation of an anomalous excess
of νe charged current quasi-elastic-like events in the Booster Neutrino Beam at Fermilab. The true origin
of those events could be attributed to either single electrons or single photons produced in the MiniBooNE
Cherenkov detector, as the experiment lacked the ability to distinguish between the two. Using the ability of
liquid argon time projection chambers to perform electron/photon separation, MicroBooNE aims to search
for this excess in two exclusive channels: single photon and single electron. However before addressing
either hypothesis the MiniBooNE LEE must be explicitly modeled in MicroBooNE. This requires that the
MiniBooNE detector response, event reconstruction, selection and their collective effects be removed before
mapping the observable excess to MicroBooNE. This note describes this “unfolding process,” and provides
the end results of the true unfolded distributions for two well motivated LEE hypotheses: (a) electrons from
an increased intrinsic νe charged current event rate and (b) single photons due to neutrino neutral current
∆ production with subsequent radiative decay.
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1 Introduction

The MiniBooNE experiment searched for νµ → νe oscillations by looking for an excess in electron-like
events in the Booster Neutrino Beam (BNB) at Fermilab [1]. This was primarily motivated by a prior
ν̄µ → ν̄e-like signal at the LSND experiment [2], which although using a different neutrino source at a dif-
ferent baseline, had a similar L/Eν as MiniBooNE. This allowed MiniBooNE to probe oscillations at the
same ∆m2 as suggested by LSND, interpreted as light sterile neutrino induced oscillations [3, 4]. Although
MiniBooNE did indeed observe a significant excess of νe charged current quasi elastic (CCQE)-like events,
the majority of the excess was reconstructed at a lower energy than generally expected if the 1 eV2 oscillation
hypothesis of LSND was indeed their true origin, instead favouring smaller mass-splittings and much larging
mixing angles than the LSND anomaly. This “low energy excess” (LEE) is shown in Fig. 1.

Dispite the slight tension in parameter space between LSND and MiniBooNE sterile explanations, the
most widely discussed explanation of the LEE is still νµ in the BNB oscillating into νe at a high ∆m2 (i.e. the
light sterile neutrino oscillation hypothesis), followed by the νe interacting in the detector through CCQE
scattering and producing a single electron (plus hadronic recoils not typically reconstructible in MiniBooNE).
However, due to MiniBooNE being a mineral oil (CNH2N ) Cherenkov detector, and consequently its inabil-
ity to differentiate electromagnetic (EM) shower Cherenkov rings that originate from either an electron or
a photon, the MiniBooNE LEE could also be interpreted as an excess of single photon events rather than
single electron events, or even some combination of the two. As can be seen in Fig. 1, photons coming from
neutral current (NC) π0 events and NC radiative ∆ → Nγ decay events, where N is a proton or neutron,
are the largest background at the low energy region where the excess is present.

The MicroBooNE experiment[5] is a liquid argon time projection chamber (LArTPC) detector sitting
in the same neutrino beam at a similar baseline as the MiniBooNE experiment. Using a combination of
calorimetric energy deposition studies of the beginning of an EM shower (dE/dx) as well as observation of
a photon-conversion gap relative to an event vertex (e.g. if an associated track is also visible), MicroBooNE
can separate out photons and electrons and thus discern the origin of the MiniBooNE LEE.

In order to test any hypothesis of the LEE origin at MicroBooNE one needs a concrete model. For the
sterile neutrino hypothesis, the model is based purely on BNB flux predictions from first principles and “3+1”
neutrino oscillation theory [3], followed by MicroBooNE cross-section and detector Monte Carlo. If one wants
to test more generic non-oscillation hypothesis, however, the effects of the MiniBooNE detector, reconstruc-
tion, and event selection must be “removed” or “unfolded” in order to estimate the true underlying excess
prediction before generating a corresponding signal in the MicroBooNE Monte Carlo for further testing.
This still must be performed under some concrete assumptions about the nature of the excess; i.e. a com-
pletely model-independent MiniBooNE LEE signal prediction is not possible to arrive at, since, depending on
the underlying hypothesis, the unfolding of detector effects can lead to drastically different truth information.

In order to perform this unfolding for a variety of model hypothesis the full MiniBooNE Monte Carlo
simulation that went into the CCQE analsyis, both before and after analysis selection, as well as the observed
data is required at an event-by-event level, rather than the binned final histogram as was in the public release,
https://www-boone.fnal.gov/for_physicists/data_release/. To this end, the MiniBooNE collabora-
tion graciously granted us access to their Monte Carlo and data used in the 6.46E20 POT neutrino mode
analysis.

Currently, there are several ongoing analysis efforts in MicroBooNE to search for a LEE [6, 7, 8, 9],
utilizing multiple and complementary reconstruction frameworks. For each and all of those efforts, a common
and accurate LEE signal prediction is necessary for a variety of purposes:

1. Analysis optimization: Reconstruction, particle identification, and event selection has to be developed
and optimized for any given LEE signal hypothesis, and this optimization should aim to maximize
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Figure 1: The MiniBooNE CCQE analysis results showing breakdown of the Monte Carlo simulation pre-
dicted backgrounds as well as data from the initial 6.46E20 protons-on-target (POT) exposure in the neutrino-
mode BNB. This figure is the same as in the MiniBooNE publications, but remade using their Monte Carlo
simulation. The event spectra are binned in reconstructed neutrino energy assuming quasi-elastic scattering
(EQEν ) (Left), and in cosine of the angle of the reconstructed EM shower relative to the beam axis (Right).

the significance of an observation consistent with a signal hypothesis relative to the background-only
hypothesis. This requires that the analyzers compare the results of reconstruction, particle identifica-
tion and event selection strategies for both signal and background samples, and that they also study
limitations due to systematic effects on both samples.

2. Quantifying final sensitivity and measurement significance: Any LEE search must be characterized by
its final sensitivity to a signal hypothesis. Furthermore, in the case of a positive (excess) result, an
excess significance relative to a background-only prediction can be quantified without the need for an
excess signal prediction; however, to quantify consistency of any observed excess with a given signal
hypothesis, a signal simulation is needed. In addition, the significance of signal predictions relative to
alternative signal hypotheses, and not just background-only predictions, is important for quantitative
remarks on whether or not the (positive) data favors any particular signal interpretation over another.
In the case of a null result, a signal simulation is needed in order to calculate the significance with
which a given excess hypothesis is excluded.

3. Providing a meaningful physics statement: Following a LEE search the significance of any excess or
lack thereof must be quantified, and the consequence of either result elaborated in terms of a partic-
ular physics hypothesis. For example, if a significant excess is observed, consistent with a particular
hypothesis, one could further investigate whether the observed properties of the excess explicitly agree
with given model predictions.

4. Allowing direct comparisons between independent analyses. In order to facilitate the direct comparison
of results obtained in, for example, independent reconstruction and analysis selection schemes, one must
ensure the underlying LEE signal hypothesis is the same in all analyses, for a given signal model. This
is of particular importance in the event that there is disagreement in results when analyzed under
different frameworks.
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2 Unfolding Methodology

In translating the MiniBooNE observed excess, given as a function of reconstructed variables, to the
MiniBooNE true (or “raw”) excess as a function of a specific truth-level variable, one must “unfold” the
effects of finite resolution, efficiencies and other detector effects. In this unfolding, a map between a recon-
structed variable (e.g EQEν , visible energy Evisible, or cos θ) after the MiniBooNE νe CCQE event selection is
applied, to an underlying true variable (usually true neutrino energy, Eν), is constructed. The resulting map
or “response” matrix encapsulates not only the detector effects, but also the efficiencies of the particular
CCQE selection cuts.

This act of “unfolding” is neither uniquely defined nor a well behaved process when taken at face value.
The “folding” process usually entails loss of information, meaning that the inverse, unfolding, is an ill-posed
task in which one inherently cannot recover the full original information. Furthermore, many, sometimes
infinite, true solutions can be folded to produce statistically identical folded reconstructed spectra. These
problems necessitate the use of regularization of the unfolding process, which are discussed further in later
sections.

The detector effects, as well as analysis selection effects, are contained entirely in the response matrix1.
The response matrix, A, can be intuitively understood as a conditional probability

Aiα = P (Reconstructed in i|come from α), (1)

which, under the assumption that A is generated by Monte Carlo simulation (MC), is the probability that
an event is reconstructed in bin-i, given that it was generated in truth bin-α2. It is not necessarily true
that every true event is reconstructed somewhere; there may be inefficiencies in the system causing the “loss
of events“, as would be expected in a physical detector. This event loss can be quantified by defining an
efficiency

nr∑
i=0

Aiα = P ( Reconstructed somewhere | come from α) ≡ εα. (2)

Mathematically, to unfold a measured spectrum, d, is to solve the system of nr coupled linear equations
given by

d = Au ⇔ di =

nt∑
α=0

Aiαuα. (3)

If the matrix A is invertible, then the unfolding equation for the unfolded spectrum u can be explicitly
solved,

u = A−1d ⇔ uα =

nr∑
i=0

A−1αi di. (4)

To solve this explicitly, one may take the single value decomposition (SVD) of the matrix A,

A = OSV T , (5)

where O is an orthogonal nr × nr matrix, V is an orthogonal nt × nt matrix, and S is an nr × nt diagonal
matrix containing zero(es) or positive elements. Any real nr × nt can be decomposed in this way. The
diagonal elements of S, labeled Sii ≡ si, are called the singular values of the response matrix A. One can

1Often referred to as a smearing or migration matrix in the literature.
2By convention in this note, Latin indices (i, j, k..) run over reconstructed variables and have dimension nr, and Greek indices
(α, β, γ...) run over truth variables of dimension nt.
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always assume that si will form a decreasing sequence, as one can swap columns of O and V as long as one
swaps the corresponding singular values, with no change on the response matrix A.

The SVD can be used to rotate the data, di, and the unfolded truth, uα, such that new rotated vectors
can be defined,

y ≡ V Tu , b ≡ OT d. (6)

In this basis, one can rewrite the system of coupled linear equations that make up d = Au as Sy = b, which
is now a system of decoupled independent linear equations, as S is diagonal by definition, greatly simplifying
the problem. Solving this explicitly gives yα = δiα

bi
si

, where S−1ij = 1/si for i = j and zero otherwise. To
obtain the true underlying unfolded spectra, this can then be rotated back

uα =

nr∑
k=0

nr∑
j=0

VαkO
T
kj

[
dj
sk

]
. (7)

After writing our unfolded spectrum in this way, a problem is immediately highlighted. If any singular
values are zero (0), then the unfolding is not defined. This is well known from linear algebra, since, if a
matrix has a zero (0) singular value, it is degenerate and its inverse does not exist. However, the scenario
that any singular values are small in comparison to the observed data, is equally ill-defined, as then that
element contributes hugely to the unfolded spectra. Furthermore, small, statistically insignificant fluctua-
tions in dj are amplified by the presence of a small, non-zero singular value, up to the point the value of
dj/sk is essentially arbitrary. This problem can be so dramatic that small deviations of as little as one (1)
event in one (1) bin can lead to unrecognizably different unfolded solutions. The effect of this is to produce
rapidly varying solutions, often with unphysical, negative numbers of events, whose covariance matrix shows
bin-to-bin differences of very large magnitude.

2.1 Unfolding Algorithms

The smearing and loss of events through inefficiencies that are modeled by the response matrix inherently
contain a loss of information. As such, many possible combinations of truth level events that are very differ-
ent might “fold” to very similar reconstructed spectra. Any function or algorithm that pertains to reverse
this via some unfolding acts similarly to a non-injective function, whose inverse is not well defined.

Instead of directly inverting the response matrix, the problem of unfolding can be rephrased as finding
the solution that minimizes the least squares problem

(Au− d)TD−1(Au− d) = min. (8)

The solution of this is known as a “maximum likelihood estimator”; directly inverting the response matrix
is an example of this. As inverting the response matrix leads to a maximum likelihood estimator, and al-
though the variance procuded via this method is huge, it can be shown that it is in fact the smallest possible
covariance for all unbiased methods. More precisely, the variance of any unbiased estimator is bounded by
the inverse of the Fisher information (the Cramer-rao bound [10, 11]) and the maximum likelihood estimator
saturates that bound. Thus, any method constructed to reduce the variance will necessarily introduce a bias.

This introduces the concept of “regularization,” in which some small known bias (systematic uncertainty)
is accepted in order to make a large improvement in variance (statistical uncertainty) in the final unfolded
spectra. In practice, the regularization and problem can sometimes be constructed such that the introduced
bias is almost negligible.

The primary method in this analysis is D’Agostini’s Iterative Bayesian Unfolding [12], although a second
unrelated method, SVD Unfolding [13], has also been used as a cross-check. The primary methods for each
algorithm are described briefly below, although for complete details please see references therein.
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2.1.1 D’Agostini Iterative Method

The D’Agostini iterative approach [12] is a widely used method for unfolding both in the HEP community,
as well as in optics, astronomy and audio-analysis fields where it is known as Richardson-Lucy deconvolution
[14, 15]. It is motivated by Bayes theorem and requires an initial prior guess of the solution, u0, which is
usually taken to be the Monte Carlo truth, t, or a flat distribution. It has the benefit of having a very easy
and understandable algorithm in which the unfolding takes place.

This initial estimate ,u0α, is then updated via the iterative algorithm utilizing Bayes theorem to derive
the probabilities that a given reconstructed event originated in a particular true bin at iteration k + 1;

uk+1
α =

1

εα

nr∑
i=1

P ( Generated in α| Reconstructed in i), (9)

=
1

εα

nr∑
i=1

[
P ( Reconstructed in i| Generated in α)P ( Generated in α)

P ( Reconstructed in i)

]
, (10)

=
1

εα

nr∑
i=1

[
Aiαukα∑nt

β=1Aiβukβ

]
di, (11)

=

nr∑
i=1

Mk
αidi (12)

where in the equation 11 one uses the fact that Aiα is the probability that an event generated in truth bin α
is reconstructed in bin i, by construction, and in the last line, equation 12, the Bayesian “unfolding” matrix
Mk has been defined, which takes each iteration to the next. As can be seen, at each iteration step the prior
probability is updated to the previous solution.

If one stops after one iteration, the result is maximally biased towards the initial estimate, often the
Monte Carlo truth or a flat prior. However, if sufficient iterations are performed, the solution will eventually
converge identically to the matrix inversion solution containing large variances and rapid statistical-driven
oscillations [16]. Somewhere in between, the solution will contain some non-zero bias, but significantly
smaller variance, thus the regularization parameter is the number of iterations undertaken. Note that, by
construction, the number of events in the refolded spectrum for D’Agostini’s approach is identically that of
the observed data, in this case the MiniBooNE excess. This is a very useful trait of D’Agostini’s method that
is not guaranteed across other methods of unfolding, but ensures that all unfolded solutions will produce an
excess of equal statistical significance to the observed data.

D’Agostini’s original method for computing the covariance matrix ignored the dependence of any given
iteration on the previous iterations, underestimating the uncertainty if one makes more than one iteration,
as was pointed out in [17]. One must calculate and update the error propagation matrix at each iteration,

∂uk+1
α

∂di
=Mαi +

nr∑
k=1

Mαkdk

 1

ukα

∂ukα
∂di
−

nt∑
β=1

εβ
ukβ

∂ukβ
∂di
Mβk

 . (13)

This error propagation matrix can then be used to obtain the final covariance matrix on the unfolded
distribution once your iteration has stopped,

Uαβ =

nr∑
ij

∂uα
∂di

Dij
∂uβ
∂dj

. (14)

This takes into account the effect of systematic and statistical uncertainties and correlations in the
measured data throughout the iterative unfolding. It does not, however, take into account the effect of
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limited Monte Carlo statistics in constructing the response matrix, A. Reference [18] provides more details
on the construction of these error propagation formulae. In order to calculate the covariance matrix due to
the underlying Monte Carlo, the error-propagation matrix for the unfolded solution (at iterative step k) due
to the response matrix A must be calculated, as that is where the MC uncertainty enters the solution. This
matrix is given by

∂uk+1
α

∂Aiβ
=

1

εα

(
ukαdi∑nt

δ Aiδukδ
− uk+1

α

)
δαβ −

ukβdi∑nt

δ Aiδukδ
Mαi+ (15)

uk+1
α

ukα

∂ukα
∂Aiβ

− εα
ukα

nr∑
l=1

nt∑
γ=1

dlMαlMγl

∂ukγ
∂Aiβ

. (16)

The final covariance matrix due to this term can be computed in the usual way,

Uαβ =

nr∑
ij

nt∑
γδ

∂uα
∂Aiγ

Viγ,jδ
∂uβ
∂Ajδ

, (17)

where a new higher-dimensional covariance matrix Viγ,jδ has been introduced. This is the covariance be-
tween the iγ’th component of the 2D response matrix A and the jδ’th component. In practice this can be
used to implement any statistical or systematic uncertainty that exists in the MiniBooNE Monte Carlo and
ensure that they are propagated correctly onto the final unfolded example. This covariance matrix can then
be added with the covariance matrix due to the uncertainty on the observed data as calculated above, to
give a final covariance matrix for the full unfolded solution. One must be careful when including systematics
on MiniBooNE’s Monte Carlo to ensure you are not double counting in MicroBooNE’s systematics also.
This can be seen most clearly in the case of flux uncertainties as both MicroBooNE and MiniBooNE sit in
the same beamline. As such until MicroBooNE’s own systematic uncertainties are fully understood we are
performing this analysis with only statistical uncertainty on the MiniBooNE Monte Carlo included in V ,
implemented by filling the higher dimensional “diagonal” of V with the corresponding statistical uncertainty
of that bin.

2.1.2 SVD unfolding

The prescription outlined in Ref. [13] for SVD unfolding comes from studying the SVD of the response
matrix A. Although one can simply set a singular value to zero to remove it from the response matrix
when folding, this method does not work for unfolding, as a matrix with even one zero singular value is a
non-invertible degenerate matrix. As such, the SVD unfolding algorithm attempts to remove the effect of
small singular values via a form of Tikhonov regularization [19].

In this form, the least-squares problem is modified to a form including a regularization scheme introduced
with strength τ ,

(Aw − d)TrD−1(Aw − d) + τ(Ct)TrCw = min, (18)

where C is a second-derivative “Curvature” matrix which favors results to be smooth and without sudden
sharp steps. In addition to this regularization strength, a series of rotations and re-scalings are introduced,
and the response matrix A is recast as a “number-of-events” matrix in order to give more weights to entries
which have higher statistics in the MiniBooNE Monte-Carlo and thus are better known. Reference [13]
provides a detailed discussion of these rotations, as well as the exact derivation of the final solution for
unfolded spectra; the result is quoted here for convenience. The effect of introducing τ means that the
singular values shift and the exact inversion solution is replaced by the regularized solution

uα = tα

nr∑
k=0

nt∑
β=1

C−1αβV
′
βk

[
d̂ks
′
k

s′k
2 + τ

]
, (19)
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where s′ and V ′ now come from the SVD of ÂC−1 = O′S′(V ′)T, and Â is the rotated and scaled response

matrix in a basis where the observed data, d, has been transformed to, d̂, where it has a covariance matrix
equal to a unit matrix, implying every entry in d̂ is uncorrelated and with the same uncertainty. The effect
of non-zero τ can be seen immediately, effectively allowing for small and even zero singular values. Its effects
are often likened to a cutoff for a low-pass filter, regularizing the singular effects of small si.

2.2 Choice of regularization parameter

By its very nature, folding in detector loss, energy resolution and cut efficiency, the folding procedure is
an information lossy process. As such, many true spectra can fold to the same reconstructed spectra, and,
inversely, given some observed reconstructed data spectrum, one can unfold it to a near infinite number of
true underlying solutions which are statistically consistent with each other. As such there will always need
to be a choice of one solution, or combination, over the others. In many cases one can invoke a prior physics
requirement on the solution, e.g. a positive number of events; smooth, continuous distribution; etc. When
the problem is phrased in terms of regularization, this choice corresponds to the choice of regularization
strength. Central to choosing a regularization parameter is the concept followed in this analysis that the
unfolded solution should be “as accurate and precise a solution as possible, while remaining statistically
consistent with the observed MiniBooNE data.”

By this, a solution is required to satisfy the following criteria:

• Give as small a variance on unfolded spectra as possible: Minimize Σnt
α U(α, α).

• Give zero (or consistent with zero) bias on the unfolded spectra: All bα/
√
Bα,α ≤ 1, where B is the

covariance matrix on the bias b.

• The MiniBooNE data be consistent with being a single experiment drawn from a distribution with
expectation value equal to the refolded solution: χ2(δ, d)/ndof ≤ 1, where δ = Au.

Given an infinite choice of regularization parameters, the above three conditions will give a single choice of
regularization parameter. This was also motivated by the desire to avoid using an algorithm-specific method
to choose the regularization, such as the SVD method of studying the singular values, as that way would
necessitate different methods of choice in the cross-checks.

3 LEE Models

The tools described in the note can be applied to any hypothesis as to the origin of the LEE anomaly
in order to arrive at a prediction at MicroBooNE. Two well-motivated LEE hypotheses are unfolded in this
section: (a) electrons from an increased intrinsic νe charged current event rate and (b) single photons due
to NC ∆ production with subsequent radiative decay. Shown in Fig. 2 is the MiniBooNE excess stacked on
top of each of the models’ respective Monte Carlo components, after subtracting off the other background
categories.

3.1 Electron-like Model: Enhanced intrinsic νe flux folded with CC cross-section

In this model it is assumed that the low energy excess is solely originating from an energy-dependent
modification to the rate of intrinsic νe CC interactions. This is hypothesized to come from a combination
of modified cross-section or flux which, although not greatly motivated from a theoretical stand point, it
provides a simple, clean test-bed for the unfolding methods described above. This model has been the
primary electron-like model for the MicroBooNE studies of the MiniBooNE LEE. Under this hypothesis, the
MiniBooNE LEE can be reinterpreted as an excess of νe events above a background of intrinsic νe, as shown
in Figure (2), after subtracting off the other non-intrinsic backgrounds. The true underlying spectrum is
defined as the parent νe energy assuming that the neutrino interacted. The reconstructed variable is taken to
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Figure 2: The MiniBooNE low-energy excess (observed MiniBooNE data minus total background prediction
in MiniBooNE), compared to absolutely normalized MiniBooNE MC-predicted backgrounds originating from
intrinsic νe only ( left) and NC resonant ∆ production and subsequent radiative decay ( right), with the
remaining backgrounds subtracted off. Error bars indicate full statistical uncertainties on observed data and
MC statistical uncertainties are included as gray shaded region. It is the black data points that are the
starting point for the unfolding. By assuming these explicit backgrounds (left/right) as the LEE source, the
black points are then assumed to be the result of an increase in underlying green/tan spectra respectively. The
unfolding procedure followed in this analysis aims at determining this increase quantitatively, as a function
of some MC-truth variable for each exclusive source sample (intrinsic νe CC/NC ∆→ Nγ).

be the reconstructed neutrino energy assuming quasi elastic scattering, EQEν , under the electron hypothesis,
which is defined as

EQE =
mNEvis − 1

2m
2
e

mN − Evis +
√
E2

vis −m2
e cos θ

≈ mNEvis

mN − Evis(1− cos θ)
, (20)

where mN is the mass of the struck nucleon, Evis and cos θ are the total visible energy and angle of a
reconstructed electron-like Cherenkov cone. The true neutrino spectrum and reconstructed spectrum after
CCQE event selection are provided in Fig. 3 alongside the associated response matrix A and true neutrino
energy dependent efficiency.
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Figure 3: Left: True underlying intrinsic νe CC (tα, in blue) and reconstructed νe CCQE event distributions
in MiniBooNE, after reconstruction and MiniBooNE CCQE selection (ri, in green), as functions of true
neutrino energy Eν and reconstructed EQEν , respectively. Shown also is the combined detector, reconstruction,
and νe CCQE selection efficiency in the bottom panel, as a function of true neutrino energy, Eν . Note that
below 200 MeV in true neutrino energy, no events pass the νe CCQE selection leading to a 0% efficiency.
This means one cannot unfold to below 200 MeV in true neutrino energy. Right: The response matrix
constructed such that it folds the Monte Carlo truth to Monte Carlo reconstructed variables as shown in the
left, i.e. r = At. The z color scale represents the conditional probability.

4 Photon-like Model: Enhanced rate of NC ∆ resonance with
subsequent radiative decay

In this model it is assumed that the MiniBooNE LEE is solely due to an increased rate of resonant
production of ∆’s (∆± or ∆0) with subsequent radiative decay. The vast majority of events that pass the
MiniBooNE CCQE selection cuts are NC ∆0 events, with only 0.2% of radiative events being CC ∆± pro-
duction. Kinematically, resonant ∆ production with subsequent radiative decay is very close spectrally to
the LEE signal, as can be seen in Figure 1. Although constrained by electron scattering measurements,
radiative decay of ∆’s from resonant scattering in the neutrino sector has never been directly measured and
is the primary photon-like candidate that could explain the MiniBooNE LEE. The true underlying signal is
defined as a function of the parent ν energy assuming NC ∆ resonant interaction and subsequent radiative
decay. The reconstructed variable is taken to be the reconstructed neutrino energy assuming CCQE scat-
tering, EQEν 20 as defined above, taking the photon energy as the electron energy.

In Figure 4, the true and reconstructed spectra for NC ∆ → Nγ in MiniBooNE are plotted alongside
the associated response matrix mapping between them. As can been seen, the response matrix is highly
off-diagonal, even more so that the case of the intrinsic νe CC model signal. In fact, the combined detector
and CCQE selection efficiency is approximately energy independent, as seen in the bottom panel of the
figure on the left. Thus, neutrinos of all energies that interact via NC scattering to produce a ∆ are equally
likely to produce a photon that is subsequently mis-identified as an electron in the MiniBooNE detector.
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This would suggest that the unfolded spectrum should be closer to a flat normalization increase relative to
the Monte Carlo predicted central value, which also follows from the fact that the ∆ radiative sample is
spectrally very close in shape to that of the observed LEE in MiniBooNE. In general, one can unfold into
any true variable, not necessarily true neutrino energy. As a cross-check, the unfolding of the photon-like
model has also been performed via true ∆→ Nγ photon energy, yielding consistent results.
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Figure 4: Left: True underlying NC ∆ → Nγ resonant (tα, in blue) and reconstructed NC ∆ → Nγ
event distributions in MiniBooNE, after reconstruction and MiniBooNE CCQE selection (ri, in orange), as
functions of true neutirno energy Eν and reconstructed EQEν , respectively. Shown also is the the combined
detector, reconstruction, and νe CCQE selection efficiency in the bottom panel, as a function of true neutrino
energy, Eν . Right: The response matrix constructed such that it folds the Monte Carlo truth to Monte Carlo
reconstructed variables as shown in the left, i.e. r = At. The z color scale represents the conditional
probability.

5 Results and Conclusions

The results of unfolding both the electron-like and photon-like models are shown in Fig. 5. In the electron-
like model case, one can see the strong energy dependence needed in the model, with little or no effect above
500 MeV, but almost a factor of 5 increase relative to the Monte Carlo central value required at lowest ener-
gies. This is in stark contrast to the photon-like model in which the resulting model is almost, but not exactly,
a flat normalization shift. This is in agreement with the fact that the NC ∆ → Nγ background spectrally
looks similar to the LEE anomalous events and so a flat increase in events is sufficient to reproduce the excess.

Three iterations of D’Agostini’s method are necessary for the electron-like model to converge such that
the bias is consistent with zero, while producing a signal statistically equivalent to the observed excess,
whereas only two are needed in the case of the photon-like model, primarily because the unfolded solution
is spectrally very similar to the Monte Carlo true spectra.
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Figure 5: Results of unfolding the MiniBooNE LEE under both the electron-like intrinsic νe CC hypoth-
esis ( left) and photon-like increased NC resonant ∆ production, with subsequent radiative decay hypothesis
( right), both obtained using the D’Agostini iterative unfolding algorithm. The unfolded spectra itself, as
well as the MiniBooNE Monte Carlo spectrum, tα, are plotted in both cases indicating the energy dependent
increase necessary to account for the observed MiniBooNE LEE, highlighted by the ratio of these which is
shown below.

As a cross-check, the results of unfolding the electron-like model using the alternative SVD unfolding
approach is shown alongside the D’Agostini’s iterative method in Fig. 6. As can be seen, these distinct
algorithms give strikingly similar central value predictions for the unfolded ratio.

As mentioned above, the unfolding cannot be continued below 200 MeV in true neutrino energy as the
combined effect of detector, reconstruction and νe CCQE analysis selections leads to a 0% MiniBooNE effi-
ciency below this. A 0% efficiency means that any number of true events below this is equally consistent with
the MiniBooNE observation, thus any extrapolation below this cutoff energy would have infinite uncertainty
and give no additional information. The main reason for this drop in efficiency is a 140 MeV cut applied to
the visible energy of the reconstructed EM shower, as well as the lowest energy bin in reconstructed energy
being at 200 MeV reconstructed EQEν .

The models presented here are the first and prerequisite step in quantifying the level at which MicroBooNE
can determine or exclude the origin of the MiniBooNE LEE anomaly. These models, as well as any other
hypothesis that one may want to consider, can then be imported into MicroBooNE by rescaling the rate of
intrinsic νe CC events or rate of NC ∆ → Nγ events in the MicroBooNE Monte Carlo, allowing for their
direct inclusion in MicroBooNE analyses.
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Figure 6: Results of unfolding the MiniBooNE LEE under the intrinsic νe CC hypothesis using both the
D’Agostini iterative method as well as the alternative SVD unfolding approach.
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