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A Method to Extract the Charge Distribution

Arriving at the TPC Wire Planes in MicroBooNE
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In this technote, we describe the concept and general strategy of LArTPC drifted-charge
extraction, which converts the raw digitized TPC waveform to the number of ionized electrons
passing through the wire plane at a given time. The proper recovery of the number of ionized
electrons from all wire planes is important to the success of the subsequent reconstruction algorithms.
A number of building blocks for the processing algorithm are described and characterized.

An example of implementation of the algorithm was realized inside the Wire-Cell reconstruction
package. The performance was qualitatively illustrated on MicroBooNE data with event display
pictures, which shows significant improvements. Some metrics to evaluate the performance of the
TPC signal extraction procedure are described. Next steps towards the quantification of the effect
of the proposed concept and optimization of the procedure are outlined.
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1. OVERVIEW OF LARTPC SIGNAL FORMATION

The Liquid Argon Time Projection Chamber (LArTPC) [1–4] is a novel detector being developed worldwide
for neutrino experiments. The MicroBooNE experiment [5, 6] is the first experiment in the US using a
100-ton scale single-phase LArTPC to detect accelerator neutrinos.

The principle of the single-phase LArTPC with wire readouts is shown in Fig. 1. When charged particles
traverse the LAr medium, ionization electrons are generated. They travel at a constant speed (∼1.6 mm/µs
at 500 V/cm electric field) along the external electric field toward the multiple anode wire planes. The early
wire planes collect induction signals as the drifting electrons pass through. The electrons are collected on
the wires in the final plane. The transparency of the induction planes is assured by applying appropriate
bias voltages to these wire planes. During this process, currents are produced on the wire planes. Since the
locations of wires are accurately known, the positions of the ionization electrons in the direction perpendicular
to the drift can be determined in multiple independent wire-plane views. The time of the initial interaction
can be determined by collecting scintillation light in a fast optical detector system. By measuring the time
from this prompt activity to signals on the wires, the longitudinal position along the drift direction can be
determined. Therefore, a 3D imaging of the trajectories of the charged particles in the LAr can be achieved.
The number of ionization electrons along the particle trajectories depends on the energy and type of the
particles, and can be used to deduce their properties.

FIG. 1. The principle of LArTPC is shown. (left) When energetic, charged particles traverse the LAr medium,
ionization electrons are produced and move along the external electric field towards the anode planes. (right) The
ionization electrons pass through the induction wire planes and are collected by the final collection wire plane. During
this process, signals are measured on the wires in each plane which provides information about the 3D positions and
energies of initial particles.

Figure 2 illustrates the major elements of the processes involved in forming the TPC signals. When the
ionization electrons drift through the wire planes, current is induced on the nearby wires. This process is
described by the field response functions. The principle of the current induction is described by the Shockley-
Ramo theorem [7, 8]. For an element of ionization charge, the instantaneous induced current i is proportional
to the amount of that charge q:

i = q · ~Ew · ~vq. (1)

The proportionality factor is product of the weighting field vector ~Ew at the location of the charge and its

drifting velocity vector ~vq. The weighting field vector ~Ew, which depends on the geometry of the electrodes,
can be calculated by removing the charge, placing the potential of the targeted electrode to the unity
potential, and setting all other conductors to ground. Figure 2 shows a calculated weighting potential for
one induction plane wire using a 2D simulation based on Garfield [9]. The simulation assumes MicroBooNE
geometry; the wire pitch is 3 mm. There are three wire planes, with the first two being induction and last
one being collection plane. The drifting velocity ~vq is a function of the external electric field, which also
depends on the geometry of the electrodes as well as the applied drifting and bias voltages.
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The induced current on the wire is received, amplified, and shaped by a pre-amplifier. This process is
described by the electronics response function. The resulting signal waveform is then digitally sampled at
regular intervals. The raw digit is defined as the collection of samples of charge vs. time for a single channel.
The goal of the drifted-charge extraction process is to use the measured raw digits to restore the number
of ionization electrons that have arrived at each anode plane at a given sampling time. The information
regarding the amount, wire location, and arriving time of ionization electrons are then used as input to the
later event reconstruction chain.

FIG. 2. An illustration of the process of TPC signal formation. See text for more explanations.

While the principle is straightforward, the induction current itself can be rather complicated. As shown in
Fig. 2, the weighting field becomes smaller at locations further away from the wire of interest. The weighting
field also extends beyond the “boundary” of the wire. The boundaries associated with a wire are defined
by two imaginary planes parallel to a wire, and half way between two neighboring wires. That is, within
an ideal case, all charges produced inside the boundary will drift to its associated wire (we will refer this
region as the wire region). Due to the extent of the weighting field, electrons drifting inside a wire region can
induce current in other wires. This fact makes the induced current strongly depend on the local ionization
charge distribution near the wire of interest, which in turn depends on the topology of the initial particles.

Figure 3 shows an example of the simulated (left) and measured (right) TPC signals on the first wire plane
(U-plane) in MicroBooNE. The left panel shows the cumulative contribution from the ionization charge
drifting within the wire region of interest from an ideal track with uniform charge distribution traveling
parallel to the wire plane. Also shown are the contributions from the ionization charged passing through
the neighboring wire regions on either side for this parallel track. It is clear that the positive half of the
signal, which is formed when the ionization electrons are moving toward the wire, is significantly altered by
the local ionization charge distribution. The right panel shows the measured TPC signal for tracks traveling
at different angles with respect to the wire plane. The 0 degree direction is perpendicular to the electric
field and thus parallel to the wire plane. Conversely tracks going in the 90 degree direction travel parallel to
the electric field and thus perpendicular to the wire plane. These signals are plotted normalized according
to their peak heights on the negative half of the signal. This peak corresponds to the ionization electrons
moving away from the wire plane. Since the absolute amount of ionization charge is not precisely known,
the scale of the Y-axis is taken as arbitrary. It is clear that the average TPC response function strongly
depends on the track angle. Again, this shows a dependency on the local ionization charge distribution and
is qualitatively consistent with the expectation from the simulation. We should also note that the coherent
noise removal procedure described in Ref. [10] also leads to distortions of the average field response function,
especially for tracks traveling close to 0 degrees.
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MicroBooNE Preliminary

FIG. 3. (left) Simulated TPC signals for a track traveling parallel to the wire plane. The response of charge drifting
within a wire region (0 wire) and the response including charge drifting in the three neighboring wire regions on
either side are shown. (right) Measured TPC signals for tracks traveling at different angles with respect to the wire
plane. See text for more discussion.

2. TPC DRIFTED-CHARGE EXTRACTION

2.1. Overview

As shown in Fig. 2, the goal of TPC drifted-charge profiling is to restore the number of ionized electrons at a
given sampling time from the digitized TPC signal. In this section, we describe the concepts for the various
required techniques and their software implementation.

2.2. Deconvolution Technique

The deconvolution technique was introduced to LArTPC signal processing by Bruce Baller in the context
Argoneut data analysis [11]. The goal of the deconvolution is to “remove” the impact of field and electronics
responses from the measured signal to recover the number of ionized electrons. This technique has the
advantages of being robust and fast and is an essential step in the overall drifted-charge profiling process.

Deconvolution is a mathematical technique to extract a real signal S(t) from a measured signal M(t0).
The measured signal is modeled as a convolution integral over the real signal S(t) and a given detector
response function R(t, t0) which gives the instantaneous portion of the measured signal at some time t0 due
to an element of real signal at time t:

M(t0) =

∫ ∞
−∞

R(t, t0) · S(t) · dt. (2)

If the detector response function only depends on the relative time difference between t and t0,

R(t, t0) ≡ R(t− t0), (3)

we can solve the above equation by doing a Fourier transformation on both sides of the equation:

M(ω) = R(ω) · S(ω), (4)

where ω is the frequency. In this case, we can derive the signal in the frequency domain by taking the ratio
of measured signal and the given response function:

S(ω) =
M(ω)

R(ω)
. (5)

The real signal in the time domain can then be obtained by applying the inverse Fourier transformation
from the frequency domain.

The Shockley-Ramo response function R(ω) does not address contributions to the measured signal which
are due to real world sources of electrical noise from thermal and unwanted transmitting sources or the
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approximation in the digitization. Such contributions to M(ω) will not be removed by the deconvolution.
Worse, because the response function becomes small (see below) at low frequencies for the induction planes
and at high frequencies for all planes, the noise components in these frequencies will be enhanced by the
deconvolution.

To address the issue of noise, a filter function F (ω) is introduced. Its purpose is to attenuate the
problematic noise. The addition of this function can be considered an augmentation to the response function.
The two functions are kept distinct for clarity in the notation here. Equation (5) is then updated to become

S(ω) =
M(ω)

R(ω)
· F (ω). (6)

With a suitable noise filtering model an improved estimator for the signal S(t) in the time domain can then
be found by applying an inverse Fourier transform to S(ω). Essentially, the deconvolution replaces the real
field and electronics response function with an effective software filter response function. The advantage of
this procedure is more pronounced on the induction plane where the irregular bipolar field response function
is replaced by a regular uni-polar response function through the inclusion of the software filter.

2.3. Nature of Deconvolution and Role of Software Filter

In the previous section, we described the basic procedure of the signal deconvolution through forward and
inverse Fourier transforms. In practice, the measured signal is digitally sampled at a fixed frequency. In
this case the deconvolution employs forward and inverse Discrete Fourier Transformations (DFT). In this
section we describe the deconvolution formalism in terms of DFT and χ2 minimization and the role of the
filter function.

2.3.1. Signal Extraction with Matrix Inversion

First, let’s examine the problem in the time domain before going into the frequency domain. The convolution
integral in Eq. (2) can also be written in the discrete summation format:

Mi =
∑
j

Rij · Sj , (7)

where Rij represents the impact of the overall response function. Sj and Mi are the original signal at jth
time bin and the measured signal at ith time bin. We can also write the above equation in the matrix format.

M = R · S, (8)

and we can simply derive the solution of S as

S = R−1 ·M, (9)

where the subscript −1 represents the inversion of matrix R. We should note that the above formula is
more general than that of the Fourier transformation, which requires the response matrix R to be symmetric
around the diagonal line.

2.3.2. χ2 Minimization

Solving Eq. (7) may also be written as a minimization of a χ2 function:

χ2 =
∑
i

Mi −
∑
j

Rij · Sj

2

. (10)

The minimum of χ2 can be derived as:

∂χ2

∂Sk
= 0→

∑
i

2 ·

Mi −
∑
j

Rij · Sj

Rik = 0, (11)

for any k. A solution for Eq. (7) will also solve this equation. We note this is general to the case that a filter
function is included.
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2.3.3. χ2 Minimization with a Penalty Term

As we discussed previously, without a filter function the result of the deconvolution will not be numerically
stable. In the χ2 formalism a filter function can be introduced in terms of a penalty term in the χ2 definition
which constrains the smoothness of the solution:

χ2 =
∑
i

Mi −
∑
j

Rij · Sj

2

+ χ2
penalty. (12)

The penalty term can usually be expressed in the following format:

χ2
penalty = c2

∑
j

Fij · Sj

2

. (13)

A generic matrix F is used to express the summation. A commonly used example of the penalty term would
be the square of the second derivative of the solution:

χ2
penalty = c2

∑
i

(
S

′′

i

)2
. (14)

In the discrete space, we can write this as

S
′′

i ∼ Si+1 − 2Si + Si−1 ≡
∑
j

Fij · Sj . (15)

Plugging Eq. 13 to Eq. (12) to derive the minimum, we have

∂χ2

∂Sk
= 0→

∑
i

Mi −
∑
j

(
Rij +

Fij · Fik

Rik

)
· Sj

 ·Rik = 0, (16)

for any k. Similarly, the solution is

∑
i

Mi ·Rik −
∑
j

Rij ·Rik ·
(

1 +
Fij · Fik

Rij ·Rik

)
· Sj

 = 0. (17)

In matrix notation this is

R ·M =
(
R2 + F 2

)
· S, (18)

or

S =

(
1 +

F 2

R2

)−1
·R−1 ·M. (19)

In comparison with Eq. (9), the above solution has an addition term of
(

1 + F 2

R2

)−1
, which depends on the

penalty term in the χ2 definition. The nature of the penalty term is to make sure the solution is smooth
and stable. Such penalty terms are also called regularization terms in some literature.

2.3.4. Role of the Deconvolution Filter

Now, given the above preparation, we can evaluate the role of the deconvolution filter. First, as described
in Sec. 2.2, the filter is applied to remove or suppress the contributions from certain frequencies where the
noise dominates. This directly justifies its name “filter”. Second, the augmentation of the response function
by the filter function can be equivalently and instead written to be considered part of the signal

Sfilter(ω) = Snofilter(ω) · F (ω) (20)
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based on Eq. (6). The above equation can be converted back into the time domain:

Sfilter(t0) =

∫
{t}

F (t− t0). Snofilter(t) dt, (21)

in which the estimator for the filtered signal (Sfilter(t)) receives contribution from non-filtered signal
(Snofilter(t)) at various times. Written in this way, we can see that the filter function is effectively a
smearing function. The application of a smearing function leads to cancellations of nearby large positive
and negative values in the non-filtered signal resulting in a smoother filtered signal. Third, it can be easily
seen that Eq. (19) is basically the discrete form of Eq. (21). In this case, the filter function is related to the
penalty term added to χ2 function which is to constrain the smoothness of the final solution.

Given the above understanding of the role of deconvolution filter, we can construct various filters. In
particular, we constructed two filters which achieve different goals. The first filter is a Wiener-inspired [12]
filter which is applied to maximize the signal-to-noise ratio in the deconvoluted signal in each wire plane.
While conserving the signal strength in terms of integration of signal height, this filter causes some undesired
negative tails in the signal. Furthermore, the Wiener-inspired filter can be different for each wire plane. The
second is a Gaussian filter (equivalent to a Gaussian smearing function in the time domain), which doesn’t
cause negative tails. This choice also conserves charge and preserves the time information in the real signal.
If chosen to be the same for all wire planes, one can compare the reconstructed ionization charge between
different wire planes at given digitization time slice.

2.4. 2D Deconvolution for Induction Planes

The 1D deconvolution procedure described in Sec. 2.2 works well in dealing with signals in the collection
plane, but is not optimal when applied to signals in the induction wire planes. As described in Sec. 1, the
induction plane wire signal receives contributions not only from ionization charge passing by the wire of
interest, but also from ionization charge drifting in nearby wire regions. In addition, within the wire region
of interest the value of the field response function varies appreciably and so at small scales the location of the
drifting charge relative to the wire is important. Ignoring the later effect, Eq. (2) can be naturally expand
to

Mi(t0) =

∫ ∞
−∞

(R0 · (t− t0) · Si(t) +R1 · (t− t0) · Si+1(t) + ...) · dt, (22)

where Mi represents the measured signal from wire i. Si and Si+1 represents the real signal inside the
boundaries of wire i and its next neighbor respectively. The R0 represents the average response function for
an ionization charge passing through the wire region of interest. Similarly, the R1 represents the average
response function for an ionization charge drifting past in the next adjacent wire region. One can easily
expand this definition to n number of neighbors by introducing terms up to Rn.

If we then apply a Fourier transform on both sides of Eq. (22), we have:

Mi(ω) = R0(ω) · Si(ω) +R1(ω) · Si+1(ω) + ..., (23)

which can be written in a matrix notation as:
M1(ω)
M2(ω)

...
Mn−1(ω)
Mn(ω)

 =


R0(ω) R1(ω) . . . Rn−2(ω) Rn−1(ω)
R1(ω) R0(ω) . . . Rn−3(ω) Rn−2(ω)

...
...

. . .
...

...
Rn−2(ω) Rn−3(ω) . . . R0(ω) R1(ω)
Rn−1(ω) Rn−2(ω) . . . R1(ω) R0(ω)

 ·


S1(ω)
S2(ω)

...
Sn−1(ω)
Sn(ω)

 (24)

Now, if we assume that we know all response functions (i.e. the matrix R), the problem converts into
deducing the vector of S with the measured signal M . This can be achieved by inverting the matrix R. In
practice and away from plane edges the matrix R is taken to be symmetric and its inversion can again be
achieved by the discrete-space techniques described in Sec. 2.3. As this expands the 1D deconvolution (with
respect to the time axis) into a 2D deconvolution (with respect to both the time and wire axes) similarly we
must also expand the filter function to cover both time and wire dimensions.

A comment on the limitation (or approximation) assumed in the 2D deconvolution is needed. As shown
in Eq. (22), the average response functions are used in describing the measured signal. These ignore the
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detailed position dependence of the response function. This approximation ignores the fine grained but
clear position dependence in the calculated weighting fields. However, since we can only measured the
signal from any given wire as a function of time there is no additional information to be used to resolve
the ionization electron distributions within a wire region at this stage. This technique can in principle be
improved to include the position dependent response once the local ionization charge distribution is roughly
reconstructed. Currently, we did not explore this possibility.

2.5. Additional Challenges in Deconvolution
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FIG. 4. (left) Examples of simulated field response functions for induction (black and red) and collection (blue) wires
are shown in the time domain. (right) The same are shown in the frequency domain.

The 1D and 2D deconvolution procedures provide a robust method to extract the ionization electrons for
the collection and induction planes, respectively. While working well for the collection plane the procedure is
still not optimal for the induction plane due to the nature of the induction plane signal. Figure 4 shows the
field response as simulated by Garfield for induction and collection wire planes and point ionization electrons
without diffusions. While the field response for the collection wire plane is uni-polar, the field response for
the induction wire plane is bipolar. The early, positive half corresponds to the ionization electron moving
towards the wire plane and the late, negative half corresponds to the ionization electron moving away. The
integration of the field response function is close to zero as the bias wire voltages are applied such that that
none of the ionization electrons are collected. The right panel of Fig. 4 shows the frequency components
of the field response. Since an induction plane field response has a bipolar shape in the time domain there
is a corresponding suppression at low frequency in the frequency domain. At zero frequency, the frequency
component essentially gives the integration of field response function over time and thus should be near zero
(again, because no charge is collected).

The suppression of the induction field response at low frequency is problematic for the proposed deconvo-
lution procedure. First, as shown in Ref. [10], the measured signal contains the electronic noise, which usually
increases at low frequency (the so-called 1/f noise). Therefore, as shown in Eq. (6), the low frequency noise
will be amplified in the deconvolution process, since the denominator (i.e. the induction field response)
is generally small at low frequency. This can be seen clearly in Fig. 5, where the low frequency noise is
significant. The large low frequency noise would lead to large uncertainty in the charge estimation and needs
to be dealt with. We considered three ways to deal with this problem.

2.5.1. Using An Imbalanced Response Function

As described above, it is the balanced and bipolar nature of the induction response which leads to it being
small at low frequencies and it is this which then can enhance the noise. It’s natural to then imagine using
an intentionally imbalanced field response in the deconvolution procedure. As it turns out, this is indeed
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FIG. 5. An example deconvoluted spectrum for the induction plane.

what has been done initially with 1D average field response. Figure 6 shows the deconvoluted signal on
the induction plane with an imbalanced field response function. As expected, the low-frequency noise is
effectively suppressed. However, the mismatch of the field response function used in the deconvolution and
the actual physical field response leads to a distortion of the signal. In this figure, a stopping muon is shown.
The blue shadow below the muon track is due to the distortion. Near the vertex where the muon stops and
is captured, there is a clear gap and which is indicated on the figure. The appearance of the gap is due to the
negative tail of the large muon capture signal totally canceling the signal arising from the nearby end of the
muon track. Therefore, this approach is not sufficient as it introduces large distortions in the deconvoluted
image. On the other hand, one may consider investigating hardware solution of intentionally allowing some
portion of drifting ionization charge to be collected on the induction wires. The detailed discussion of this
possibility is beyond the scope of this technote and is omitted.

2.5.2. Low-frequency Software Filter

In Eq. (6), a frequency-domain filter function is introduced to suppress the numerical instability caused by
the presence of noise. One can imagine to use this software filter to suppress the electronic noise at low
frequency. This is also not optimal due to large distortion introduced on the signal. To understand this point,
we recall the discussion in Sec. 2.3; the software filter is effectively a smearing function. Figure 7 shows an
illustrative real signal (left), its convolution with a low-frequency filter (middle), and the low-frequency filter
itself (right). It is obvious that the signal is strongly distorted due to the application of the low-frequency
software filter (such as the strictly defined Wiener filter).

2.5.3. Region Of Interests (ROI) and Adaptive Baseline (AB)

In the previous two sections, we show that we cannot suppress the low-frequency electronic noises with either
the intentionally imbalanced response functions nor the low-frequency software filter. Instead we turn to
two techniques in the time domain: region of interest and adaptive baseline.

The region of interest (ROI) technique was proposed by Bruce Baller in the context of reducing data
size and speeding up the deconvolution process. At the same time, the ROI technique can also be used to
suppress the low frequency noise. In order to recognize this point, we consider a time window with N time
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FIG. 6. Deconvoluted induction plane signal using an imbalanced field response function. X and Y axis represents
the wire and drift time, respectively. See text for more discussion.

FIG. 7. The impact of the low-frequency filter (right). The unit of the X-axis is MHz. The real signal and the
convoluted signal are shown in the left and middle panel, respectively. A time tick is 0.5 µs.

ticks. For MicroBooNE this would be a window of N × 0.5µs. The highest frequency that can be resolved
with such sampling would be 1 MHz. The first discrete frequency above zero is be 2/N MHz and no result
within the ROI can be sensitive to any noise components below this frequency. Therefore, if we can identify
the signal region and create a ROI to cover the signal, we can naturally suppress the low-frequency noises.

The adaptive baseline (AB) technique was introduced by Mike Mooney in the context of dealing with the
ASIC saturation [10]. The AB is essentially a local baseline calculated in a given a ROI. However, instead
of a simple average of the baseline at the start and end points of a ROI, a linear interpolation is used to
correct the baseline. Given the two constraints (start and end points of the ROI), the linear interpolation
with two degrees of freedom is the best that one can achieve to remove bias in the baseline.

In the following section, we discuss the implementation of the these techniques.

2.6. Algorithm Implementation in Wire-Cell

The Wire-Cell [13] is a new reconstruction package being developed to perform 3D tomographic reconstruction
for LArTPC events. Currently, there are four major reconstruction steps: i) TPC Signal Processing including
both the noise filtering and drifted-charge extraction, which is common for any reconstruction method, ii)
Tomographic 3D Image Reconstruction, iii) 3D pattern recognition, and iv) Calculation of physics quantities
given the identified pattern. Detailed description of the Wire-Cell reconstruction will be reported in another
technote in the future.
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Figure 8 shows the overall flow of the drifted-charge extraction algorithm. Details of the noise filtering
can be found in Ref. [14]. Here, each time tick corresponds to 0.5 µs. Each merged ticks contain six time
ticks, thus 3 µs. This choice is governed by the overall drift HV and the electronics shaping time, which is
2 µs. The default choice for Wire-Cell is 4 time ticks at 500 V/cm electric field. However, MicroBooNE is
currently running at 273 V/cm, so it is enlarged to 6 time ticks, as the field response spans over larger time.
Note, during the deconvolution process, we essentially replace the field response functions with the filter
functions. The information lost through the smearing process cannot be recovered with the deconvolution.
To select the ROIs, we use both 1D deconvolution with data-driven 1D field response function and the 2D
deconvolution with Garfield simulated response function with a low-frequency filter. Once the ROIs are
selected, the results of the 2D deconvolution without the low-frequency filter are updated with the adaptive
baseline technique. The description of the electronics response function and field responses (both 1D and
2D) can be found in Sec. 2.6.1 and Sec. 2.6.2, respectively. To select “Hit” (the signal at a particular time
slice measured in merged ticks is required to above certain threshold) and calculate its corresponding charge,
different software filters are used. They are described in Sec. 2.6.3. The details regarding the ROI selection is
elaborated in Sec. 2.6.4. The procedure to extract hit and its corresponding charge is described in Sec. 2.6.5.
In Sec. 2.6.7, we describe the calibration of the relative time offset (using “Hit”) and relative normalization
(using “Charge” given “Hit”) for field response functions among wire planes. In Sec. 2.6.6, we show the
performances on the data.

2.6.1. Calibration of Electronics Response Function

The electronic response function has been discussed in detail in Ref. [10].
The electronics response function for the MicroBooNE detector is shown in Fig. 9 in terms of signal

amplitude vs. time at a given gain. The MicroBooNE front-end cold electronics are designed to be
programmable with four different gain settings (4.7, 7.8, 14, and 25 mV/fC) and four shaping-time settings
(0.5, 1, 2, and 3 us). The shaping time is defined as the time between peak and 5% of the peak in the falling
edge. For a fixed gain setting, the peak is always at the same height independent of the shaping time.

2.6.2. Calculation of Field Response Function

There are two sets of field responses used in the actual implementation. The first set is data-inspired response
function. The second set is the Garfield-simulated response functions. The importance of using 2D field
response function has been introduced in Sec. 1. In the drift direction, the two induction planes wire planes
are labeled U and V and the collection plane is Y. The data-inspired response functions are shown in the left
panel of Fig. 10. In this case, the shape of the overall response function, which includes both electronics and
field responses, is adjusted according to a few randomly picked pulses from the data. They were used as the
traditional 1D response function. For U and V planes, these response functions are quite unbalanced. As
discussed in previous sections, they cannot satisfy the needs for the drifted-charge extraction in induction
wire planes. In the second case, the field response is calculated by Garfield [9] in a 22 cm (along the field
direction) × 30 cm (along the wire plane direction) region in 2D. The spacing between the planes is 3 mm.
The bias voltages of -110 V, 0 V, and +230 V for the U, V, and Y planes, respectively, are configured
according the operating conditions which ensure 100 % transmission of ionization electrons through the first
two induction planes. 101 wires with 150 µm diameter are set on each wire plane with 3 mm pitch. The
drift field is uniform with 273 V/cm. The electron drift velocity as a function of electric field is taken from
measurements [15, 16] instead of using the default velocity table contained in Garfield. The electron diffusion
is turned off in the simulation. The field response function then can be calculated for each individual wire
in the form of induction current (U and V planes) and collection current on (Y planes) as a function of
time for an electron drift which starts from arbitrary position within the region of calculation. The average
response function for single electrons within a wire region (over 12 different locations) is then calculated for
the closest wire R0, next adjacent wire R1, and so on. The U and V plane responses functions are shown in
the middle and right panel of Fig. 10, respectively. For induction wire planes, these response functions are
reasonably balanced as expected.

In the actual implementation, both 1D and 2D response functions are used. Ideally, there is no need to
use the 1D data-inspired response function. However, there exists coherent electronics noise in MicroBooNE
data [10]. It can be suppressed by performing a coherent noise removal across groups of 48 channels [10].
This procedure has a pathology where it will suppress the actual signal for a track traveling parallel to the
wire plane. Special algorithms, as discussed in Ref. [10], are implemented to protect the signal. Despite
these efforts, there is still a residual distortion of the signal. For example, on the U induction plane the
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FIG. 8. Diagram illustrating the basic flow of the drifted-charge extraction for induction wire plane. Here “CGF”
stands for the common Gaussian filter. “WiF” stands for the Wiener inspired filter. “LF” stands for low frequency
filter. See Sec. 2.6.4 for more information.
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FIG. 9. ASIC’s electronics shaping functions are shown for four shaping time settings at 14 mV/fC gain.

positive half of the signal is in general much smaller than the negative half of the signal. It is thus much more
difficult to differentiate the positive half of the signal from the electronics noise. Apparently, the distortion
is the largest for the tracks traveling parallel to the wire plane. With these distortions, the 2D deconvolution
sometimes has trouble resolving small signals from parallel tracks. In this case, we go back to the traditional
1D deconvolution with 1D data-inspired response function to mitigate this defect.

FIG. 10. The overall response functions, which is the convolution of the electronics response function (14 mV/fC
gain and 2 µs shaping time) and the field response, are shown. See text for more discussion.

2.6.3. Choice of Software Filter

As discussed above, we select and implement two types of filters. The first is inspired by the Wiener filter.
It is modified to not suppress low frequency components. The second one is the Gaussian filter. While the
first one is optimized for each wire plane to produce a high signal-to-noise ratio, the second one is optimized
and is the same for all the planes to correctly estimate the charge which is independently measured on each
of the three planes. This latter point is important if all three planes are used for energy measurement, as is
required for proper application of the Wire-Cell imaging technique. In this section, we describe the choice
on these software filters.

The standard Wiener noise filter [12] is constructed using the expected signal S(ω) and noise N(ω)
frequency spectra:

F (ω) =
S2(ω)

S2(ω) +N2(ω)
. (25)

With this construction, the Wiener filter is expected to achieve the best signal to noise ratio. However,
naively applying the Wiener filter to TPC signal processing is problematic. Firstly, in LArTPC, the TPC
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signal S(ω) varies substantially depending on the exact nature of the event topology. Secondly, the electronic
noise spectrum is a function of the time window over which it is observed. A longer time window allows
for observation of more low frequency noise components. Thirdly, the induction wire signal spectrum is
small at low frequency and so would be its Wiener filter. As discussed in Sec. 2.5.2, a software filter with
low-frequency suppression leads to large distortions of the signal and is thus not ideal.

The functional form of the software filter is chosen as:

F (ω) =

{
e−

1
2 ·(

ω
a )

b

ω > 0

0 ω = 0,
(26)

with a and b are two free parameters. Note, b = 2 is basically the Gaussian filter. The filter is explicitly
zero at ω = 0 in order to remove the DC component in the deconvoluted signal. This removes information
about the baseline and a new baseline is calculated and restored for the waveform after deconvolution. The
above functional form of the filter has another advantageous property:

limω→0F (ω) = 1. (27)

which means the integral of the smearing function is unity, which does not introduce any extra factor in
the overall normalization. The free parameter a and b in the above form is determined by fitting the tail of
Wiener filter at its high frequency side. For U plane, we have a = 14.36 and b = 4.95. For V plane, we have
a = 14.74 and b = 4.98. For Y plane, we have a = 14.59 and b = 5.02. The time window is chosen to be 200
time ticks (or 100 µs). The signal is assumed to be a minimal ionized track (∼ 2.1 MeV/cm [17]) traveling
parallel to the wire plane and over a distance of one wire pitch (3 mm). The noise model is from Ref. [10]
for the longest wire (∼ 5 m length).

The final software filter is shown in Fig. 11 and Fig. 12.

FIG. 11. The Wiener-inspired filter and Gaussian filter used in the 1D deconvolution. The time and frequency
domain content are shown on the left and right panel, respectively. The x-axis’s unit for the time domain is µs. For
the frequency domain, the number 2000 corresponds to ∼0.42 MHz.

Beside the high-frequency software filter described above, there is also a low-frequency software filter which
is only used to select ROIs (discussed in the next section). The functional form of the low-frequency software
filter is

F (ω) = 1− e−
1
2 ·(

ω
c )

2

, (28)

with c = 4.5 kHz. The distortion of such a low-frequency software filter has been shown in Fig. 7.

2.6.4. ROI Selection

As discussed in Sec. 2.5.3, the region of interest (ROI) is an important technique to limit the contribution
of low-frequency electronic noise to treat induction signal. The traditional ROI selection is based on the
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FIG. 12. The Wiener-inspired filter and Gaussian filter used in the 2D deconvolution. The time and frequency
domain content are shown on the left and right panel, respectively. The x-axis’s unit for the time domain is µs. For
the frequency domain, the number 2000 corresponds to ∼0.42 MHz.

raw-digit waveform. In this case, the seed of each ROI is selected by locating bins in the raw digits which
are above certain threshold values. However, this choice does not apply well to induction plane signals as
explained in the following.

Figure 13 shows an example of an ideal track (in the direction of the red arrow) with a uniform charge
distribution along the track. On the left panel, the two black lines represent the boundaries of one wire
region. If one just counts the ionization charge distribution within the wire region, the expected signal is
illustrated in the panel a) on the right. However, as we discussed in Sec. 1, the induced current on the wire
of interest depends on the weighting field, which is smaller when the ionization electron is further away from
the wire itself. Therefore, the effective charge distribution seen by the wire would be similar to the panel
b). The story does not end here. Now, for ionization electrons drifting by in the near-by wires regions, the
wire of interest will also experience a further induced current. In this case, since the ionization electrons are
further away from the target wire, the weighting field is even smaller and thus their induction is also smaller.
The realistic effective charge distribution will be similar to the panel c) on the right.

We can then see what happens to the raw digits when we take into account the bipolar induction field
response function. In the left panel of Fig. 14, the top half illustrates the real charge distribution going
through the targeted wire region. The convolution of this distribution with a bipolar response function will
lead to results illustrated at the bottom. We can see the signal height is still large at least for the start and
the end of the signal. However, in the right panel of Fig. 14, the top half illustrates a more realistic effective
charge distribution seen by the targeted wire. The convolution of this distribution with a bipolar response
function will lead to results shown at the bottom. We can see that the signal height is much smaller although
the length of signal is long. A threshold-based ROI selection will likely to miss such signal which leads to
gaps in the reconstructed images of the event activity in the LAr volume.

In order to avoid the aforementioned ROI selection inefficiency, the ROI selection is based on deconvoluted
signals with Wiener-inspired filter (WiF). We perform three rounds of deconvolution:

• 1D deconvolution with the imbalanced data-driven field response function (“1DD”).

• 2D deconvolution with the balanced Garfield-simulated field response function with a low-frequency
filter (“2DD+LF”).

• 2D deconvolution with the balanced Garfield-simulated field response function without a low-frequency
filter (“2DD”).

The ROI selection is based on applying a threshold on the result of “1DD” and “2DD+LF”. In “1DD”,
the low frequency noise is suppressed due to using the imbalanced field response. In the “2DD+LF”, the
low-frequency noise is suppressed with the low-frequency software filter. The upper left, middle, and right
panel of The ROI selection is performed with the following procedure:
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FIG. 13. Illustration of the induction plane field response for an ideal track. See text for more discussion.

FIG. 14. Illustration of the induction plane field response for an ideal track. See text for more discussion.

• The seed of ROI is chosen by applying a threshold on each of the histogram. For “1DD”, the threshold
is based on 3.6 times of the corresponding RMS noise. For “2DD+LF”, the threshold is based on
2.0 times of the corresponding RMS noise. The choices of threshold are made through looking at the
performance of ROI selection on a few events and can in principle be further optimized.

• The ROI region is then expanded from the seed to both side. A local average is calculated for every 3
near-by time bins (each time bin is corresponding to six time ticks). The ROI expansion will stop if
the local average is the local minimum (smaller than the nearby averages).

• Given the determined ROIs from “2DD+LF” or “1DD”, the content from the “2DD” was filled after
applying the adaptive baseline technique. A peak finding using the “TSpectrum” package [18] was
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further applied to the resulting histogram. Smaller ROIs are formed if there multiple visible peaks found
within the ROI, and the adaptive baseline is further applied to the smaller ROIs. The final histogram
content inside the ROI was further examined according to the 4.0 times of the corresponding RMS noise
of “2DD+LF” histogram. Note the threshold was chosen at 2.0 times of the RMS for the “2DD+LF”.
Since there are two sets of ROIS (one from “1DD” and one from “2DD+LF”), two histograms are
generated, one for each set of ROIs. They are i) “2DD” + “1DD” ROI and ii) “2DD” + “2DD+LF”
ROI. These two histograms are merged into “2D WiF Waveform” as shown in Fig. 8 by choosing the
largest content at each time slice.

• Given the determined ROIs from “1DD”, the above procedure was repeated using the content from
“1DD”. The “1D WiF Waveform” as shown in Fig. 8 is generated.

• In the final step, the two histogram (“2D WiF Waveform” and “1D WiF Waveform”) are further
merged together by choosing the largest content among these two histograms at each time slice. We
should note that the content of the histograms outside the ROI is essentially zero.

We should note that there are many “magic” numbers used in the ROI selection. These magic number
are currently obtained by a combination of educated guesses from the estimated signal to noise ratio and
experiences gained in looking at many 2D images after deconvolution and 3D images after Wire-Cell imaging.
These magic numbers can in principle be optimized with a realistic noise and induction signal simulation,
which is not available at this moment. Once this simulation is available, the reconstructed 2D images can
be compared with MC truth in order to evaluate the efficiency and purity as a function of these “magic”
numbers.

2.6.5. Hit and Charge Extraction

Once the ROIs are selected, we can extract hits and their associated charge. Two rounds of 2D deconvolution
with the balanced Garfield-simulated field response function without a low-frequency filter were performed.
The only difference between these two rounds are the software filter. In the first round, which aims at the
hit finding, Wiener-inspired filters, which are optimized individually for each wire plane, are used. In the
second round, which aims at the charge extraction, a common Gaussian filter, which is chosen to be the
same for all three wire planes, is used. The other components including: i) the field response function, ii)
the electronics response function, iii) ROIs, are the same between these two rounds of 2D deconvolution to
ensure the hit and charge information are matched.

The result of the first round of 2D deconvolution was used to choose hits. A hit is defined when a wire
waveform at a particular time slice is above a pre-chosen threshold. A time slice is measured in merged time
ticks (six in current MicroBooNE running condition). For the current implementation, we use the 3.6 times
the of the corresponding RMS noise of “1DD” as the threshold. Once a hit was found, the corresponding
charge information was obtained from the result of the second round of 2D deconvolution at the exact same
time bin.

As shown in Fig. 8, two sets of ROIs (one from “1DD” and the other from “2DD+LF”) are used to extract
the charge information. Basically, two histograms are generated with the same procedure as described in
previous section with each set of ROIs. The two histograms are then merged according to the largest content
at each time slice.

2.6.6. Performance on MicroBooNE Data

In this section, we show the performance of the aforementioned drifted-charge extraction procedure on the
MicroBooNE data by showing examples from two events. Figure 15 shows a likely neutrino interaction
in MicroBooNE (run 3493, sub-run 821, event 41075) viewed by the first induction plane (U). The left
panel shows the raw digits after the noise removal as described in Ref. [10]. The middle panel shows the
deconvoluted results based on 1D deconvolution and imbalanced data-driven field response function. In this
event, there is a track traveling at a large angle with respect to the wire plane (i.e. large coverage in the
drift time and small coverage in the wire number). It is clear that a portion of this track is below the noise
level in the raw digits. The segment is not recovered by the traditional deconvolution procedure. The right
panel shows the results from the new procedure described in this technote. In this case, the large-angle
track is clearly visible. In addition, the overall image is much sharper than the first two panels. Similarly,
Fig. 16 shows a stopping muon viewed by the second induction plane (V). In the traditional deconvoluted
result (middle panel), there is a gap below the muon capture region, which is due to using the incorrect
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(imbalanced) field response function. The image is much sharper for the new procedure (right panel). Based
on these results, it is clear that the new drifted-charge extraction procedure significantly improves the image
quality, which will lead to a much better performance in the latter event reconstruction chain.

As an example of an interesting anomaly, in Fig. 16, we can see a vertical tail at bottom of the muon
track. This part is corresponding to the case when the muon track is going through the anode wire plane.
From the raw digits, we can only see the negative signals (blue) in the first time bin, which only includes
the parts the ionized electrons leaving the induction plane. This part was misinterpreted to be a long tail
given the standard bipolar field response function used in the deconvolution.
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FIG. 15. Run 3493, sub-run 821, event 41075. The y-axis is the time in ticks. The x-axis is the wire number. This
is the U induction plane image. See Sec. 2.6.6 for more discussion.

2.6.7. Relative Calibration Among Multiple Planes

In the TPC drifted-charge extraction procedure, the response functions are required to be known. The shape
of the data-driven response function for “1DD” is based on the comparison with real data. The shape of the
Garfield-simulated response function for “2DD” is obtained by averaging point response functions simulated
by Garfield. Although the shape of the response functions is known, the relative time offsets among the
induction U, induction V, and collection Y are not known (at least for the data-driven response function).
In addition, the relative normalization of the field response function is also not known. In this section, we
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FIG. 16. Run 3455, sub-run 0, event 6. The y-axis is the time in ticks. The x-axis is the wire number. This is the V
induction plane image. See Sec. 2.6.6 for more discussion.

describe the procedure that we used to calibrate these time offsets and the relative normalization among
wire planes.

The Wire-Cell reconstruction provides a natural framework to perform such inter-plane calibrations. The
crucial observation is that the same element of charge drifts past the two induction planes and is collected
on the collection plane, and furthermore the signal times in the three planes have essentially fixed offsets.
The Wire-Cell technique allows the signals in the three planes to be associated, with a common charge
for each. This is done by dividing up perpendicular projection of the three planes into “cells” centered on
the intersection of the wires, and then merging the cells to deal with diffusion and non-perpendicular drift
paths between the planes. The inter-plane timing can be adjusted to maximize the number of hit cells.
For example, a time shift in the field response function would lead to a time shift in the location of the
corresponding hit and thus lead to a mist-match hits among three planes, which will reduce the number of
cells reconstructed.

The discrepancy of simulated time offset among the Garfield-simulated field responses and the calibrated
time offset is observed and indicates that there are differences between the simulated response function and
the data. This also draws attentions on how reliable is the shape of the simulated response function. As
discussed in Sec. 1, the induction current is described by the Shockley-Ramo theorem, in which the product
of the weighting field vector and the velocity vector of the ionization electrons is involved. The discrepancy
between the simulated and calibrated time offset essentially indicates that the model of the drifting velocity
(to be more precise, the simulation of the external drifting field) doesn’t describe the data. Therefore, one
expects that the simulated shapes of induction currents also deviate from reality. It is therefore crucial
to develop a program to calibrate the TPC field response directly for the current and future generation of
LArTPCs.

We further calibrate the relative normalization of the field response by comparing the the measured charge
vs. the predicted charge on the wire. This is possible because the predicted charge is calculated assuming
all three wire planes are seeing the same amount of ionization charge.

3. METRICS IN EVALUATING TPC SIGNAL PROCESSING

In order to evaluate the TPC signal processing, which include both the noise filtering and the drifted-charge
extraction, there are two robust metrics that can be used to evaluate TPC signal processing (which includes
both the noise filtering and the drifted-charge extraction):

• Equivalent Noise Charge (ENC):
ENC is basically proportional to the pedestal RMS in terms of ADC, and is a direct measure of the



21

noise level in the unit of electrons. It can be used to compare the noise levels from different experiments.

• Deconvoluted Noise Charge after the TPC drifted-charge extraction (DNC):
The goal of the TPC drifted-charge extraction process is to recover the number of ionization electrons
from the measured TPC signal. With the same procedure, the electronic noise will also be converted.
The unit of these noise is again electrons, which can be compared with the expected ionization electrons
from energetic charge particles. As described in this technote, the DNC depends on the ENC as well
as the frequency content of the noise spectrum. It also depends on the response function used for
deconvolution. This is the primary reason why the induction plane DNC is much higher than the
collection plane DNC. Furthermore, since we have to rely on ROI and AB techniques to reduce the
noise level for the induction plane, DNC also depends on the time window length of ROI.

Understanding the ENC and DNC for the current-generation experiments and the expected performance for
the future experiments are important steps to achieve automated event reconstruction for LArTPCs.

The ENC in MicroBooNE has been reported at Ref. [10]. As illustrate above, the calculation of DNC
depends on the drifted-charge extraction procedure. More specifically, it depends on the field response, the
noise level (ENC and the frequency content), and the length of ROI. Fig. 17 shows the calculated DNC as
a function of the time window length for the second induction (V) plane, which is expected to have the
smallest field response function (thus the largest DNC). The noise model used in this simulation is described
in Ref. [10], and the ENC is conservatively chosen to be 500 electrons, which is higher than that has been
achieved in MicroBooNE.

FIG. 17. Calculation of DNC with respect to the time window length for second induction (V) plane. The ENC used
in this simulation is 500 electrons which is higher than the ENC achieved in MicroBooNE. The red line shows the
expected signal size for a minimal ionizing particle (MIP) traveling 3.2 mm.

4. FUTURE DEVELOPMENTS

In this section, we outline some anticipated future developments:

• Calibration of the TPC field response functions:
As shown in previous sections, some of 2D induction images after drifted-charge extraction contain
shadows near regions with large drifted charge. These shadows are believed to be due to inductions
since the weighting field can extend quite far beyond the corresponding wire region. Furthermore, the
time offset calibration of the simulated response function also shows clear deviations. These facts all
point to imprecise field response functions, which need to be improved in the future. We plan to attack



22

this problem from two directions. Firstly, we will work on a TPC field response calibration device with
a laser-drive photo cathode in a local test stand at BNL. Secondly, we could try again to calibrate the
TPC field response with cosmic muons using some advanced numerical techniques. As illustrate in
this technote, we made some initial attempts to calibrate the TPC field response with cosmic muons,
but encountered many difficulties including unknown absolute charge normalization, impacts from the
digitization, and numerical difficulties to invert large-dimension matrix.

• The “magic” numbers used in the ROI selection and the hit selection should be optimized:
The optimization can be achieved once the development of a more realistic simulation in terms of
electronic noise as well as induction signal modeling is available. In this case, the “magic” numbers
can be optimized by comparing the reconstructed charge vs. the MC truth to evaluate the efficiency
and purity (i.e. fake hits). In addition, the algorithm itself can in principle be fine tuned during this
process.

• Evaluation of charge resolution:
With a more realistic simulation, we can also evaluate the charge resolution after the drifted-charge
extract procedure by comparing the extracted charge vs. the MC truth.

Furthermore, the next steps in the overall Wire-Cell reconstruction chain is i) 3D imaging, ii) 3D pattern
recognition, and iii) calculation of physics quantities such as angle and dE/dx. The 3D imaging use the
time, geometry, and charge information to construct 3D objects directly. The procedure is less sensitive to
the electronics noise and some noises introduced due to the imperfection of the drifted charge extraction
procedure, as the exact match of time and geometry from three planes is required. For example, electronics
noise in one of the plane is difficult to be matched with the other planes. At the same time, the procedure is
more sensitive to the efficiency of the charge extraction procedure. If signal from one wire plane is missed,
the corresponding 3D point is missed. We can then evaluate the 3D imaging reconstruction efficiency and
purity. With the development of 3D pattern recognition (still in progress), we can start to use metrics
such as tracking efficiency and purity to evaluate the performance. Lastly, with the reconstructed track
and shower, we need to develop the calculation of physics quantities to evaluate the angular resolution and
energy resolution. It is clear that there is a long way to go to achieve fully automated high-quality event
reconstruction. We are making solid progress toward this goal.

5. SUMMARY

In this technote, we described the concept and general strategy of LArTPC drifted-charge extraction, which
converts the raw digitized TPC waveform to the number of ionized electrons passing through the wire plane
at a given time. The proper recovery of the number of ionized electrons from all wire planes is important
to the success of the subsequent reconstruction algorithms. A number of building blocks for the processing
algorithm are described and characterized.

An example of implementation of the algorithm was realized inside the Wire-Cell reconstruction package.
The performance was qualitatively illustrated on MicroBooNE data with event display pictures, which shows
significant improvements. Some metrics to evaluate the performance of the TPC signal extraction procedure
are described. Next steps towards quantification of the effect of the proposed concept and optimization of
the procedure are outlined, which will be address in a future technote.

6. APPENDIX I: EXAMPLES OF 2D EVENT DISPLAY

In this section, we present 2D event displays for a few selected events. It is clear that the images after the
new deconvolution procedure is significantly improved (sharper and more comprehensive) than that after the
old procedure. Nevertheless, in the induction plane, there are a few low-charge blobs (as shown in Fig. 18,
Fig. 21, Fig. 22, Fig. 24) which suggests the existence of induced signals beyond the closest wire. This is
deduced from the fact that the blobs always show up at the early time slice. These blobs can also be seen
clearly in the raw digits. The existence of these blobs in the images after the 2D deconvolution procedure
indicates that the 2D deconvolution does not totally remove the induced signals beyond the nearest wire.
This is likely because the shape of the field response functions used in the 2D deconvolution procedure
doesn’t describe the data well, which has been indicated in Sec. 2.6.7. Gaps in the images are due to
unusable channels.
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FIG. 18. 2D event display of U plane from Event 6, Run 3455. (left) 2D view from the raw digits after the noise
filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote. A blue shadow can be seen on the right side
of stopping muon’s capture vertex on the raw digits image on the left, this is presumably due to induction signals on
nearby wires.
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FIG. 19. 2D event display of V plane from Event 6, Run 3455. (left) 2D view from the raw digits after the noise
filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote.

7. APPENDIX II: EXAMPLES OF 2D EVENT DISPLAY FOR
ELECTROMAGNETIC SHOWERS

Gaps in the images are due to unusable channels.
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FIG. 20. 2D event display of Y plane from Event 6, Run 3455. (left) 2D view from the raw digits after the noise
filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) For collection plane, the
2D deconvolution is not necessary.
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FIG. 21. 2D event display of U plane from Event 53223, Run 3469. (left) 2D view from the raw digits after the
noise filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote. A blue shadow can be seen on the end of the
left-most track in the raw digit images on the left, this is presumably due to induction signals on nearby wires.
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FIG. 22. 2D event display of V plane from Event 53223, Run 3469. (left) 2D view from the raw digits after the
noise filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote. Two blue shadows can be seen on raw digits,
they are likely the result of induction signal on nearby wires.

0 20 40 60 80 100 120

Wire [3 mm spacing]

0

60

120

180

240

300

360

T
im

e
 [

u
s]

After noise removal

0 20 40 60 80 100 120

Wire

After 1-D deconvolution

0 20 40 60 80 100 120

Wire

Not Implemented

After 2-D deconvolution

40000

30000

20000

10000

0

10000

20000

30000

40000

MicroBooNE Preliminary

FIG. 23. 2D event display of Y plane from Event 53223, Run 3469. (left) 2D view from the raw digits after the noise
filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) For collection plane, the
2D deconvolution is not necessary.
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FIG. 24. 2D event display of U plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the
noise filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote. Four blue shadows can be clearly seen on the
raw digits image on the left. They are likely the result of induction signal on the adjacent wires.
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FIG. 25. 2D event display of V plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the
noise filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote.
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FIG. 26. 2D event display of Y plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the noise
filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) For collection plane, the
2D deconvolution is not necessary.
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FIG. 27. 2D event display of U plane from Event 6, Run 3455. (left) 2D view from the raw digits after the noise
filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote.
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FIG. 28. 2D event display of V plane from Event 6, Run 3455. (left) 2D view from the raw digits after the noise
filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote.
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FIG. 29. 2D event display of Y plane from Event 6, Run 3455. (left) 2D view from the raw digits after the noise
filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) For collection plane, the
2D deconvolution is not necessary.
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FIG. 30. 2D event display of U plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the
noise filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote.
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FIG. 31. 2D event display of V plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the
noise filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote.
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FIG. 32. 2D event display of Y plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the noise
filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) For collection plane, the
2D deconvolution is not necessary.
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FIG. 33. 2D event display of U plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the
noise filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote.

8. APPENDIX III: EXAMPLES OF 2D EVENT DISPLAY
FOR πo

In this section, we display some of the πo events selected by the golden πo analysis [19]. Gaps in the images
are due to unusable channels.
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FIG. 34. 2D event display of V plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the
noise filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote.
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FIG. 35. 2D event display of Y plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the noise
filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) For collection plane, the
2D deconvolution is not necessary.
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FIG. 36. 2D event display of U plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the
noise filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote.
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FIG. 37. 2D event display of V plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the
noise filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) 2D view from the
deconvoluted signal with the new procedure described in this technote.
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FIG. 38. 2D event display of Y plane from Event 41075, Run 3493. (left) 2D view from the raw digits after the noise
filtering. (middle) 2D view from the deconvoluted signal with the old 1D procedure. (right) For collection plane, the
2D deconvolution is not necessary. The gap in the image is due to unusable channels.
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FIG. 39. Run 5975, event 4262. The top panels show the raw digits after noise filtering. The bottom panels show
the extracted signal after deconvolution.
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FIG. 40. Run 6058, event 8877. The top panels show the raw digits after noise filtering. The bottom panels show
the extracted signal after deconvolution.
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FIG. 41. Run 6058, event 4706. The top panels show the raw digits after noise filtering. The bottom panels show
the extracted signal after deconvolution.
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FIG. 42. Run 6145, event 814. The top panels show the raw digits after noise filtering. The bottom panels show the
extracted signal after deconvolution.


	A Method to Extract the Charge Distribution Arriving at the TPC Wire Planes in MicroBooNE 0.4 in
	Abstract
	Contents
	Overview of LArTPC Signal Formation
	TPC Drifted-Charge Extraction
	Overview
	Deconvolution Technique
	Nature of Deconvolution and Role of Software Filter
	Signal Extraction with Matrix Inversion
	2 Minimization
	2 Minimization with a Penalty Term
	Role of the Deconvolution Filter

	2D Deconvolution for Induction Planes
	Additional Challenges in Deconvolution
	Using An Imbalanced Response Function
	Low-frequency Software Filter
	Region Of Interests (ROI) and Adaptive Baseline (AB)

	Algorithm Implementation in Wire-Cell
	Calibration of Electronics Response Function
	Calculation of Field Response Function
	Choice of Software Filter
	ROI Selection
	Hit and Charge Extraction
	Performance on MicroBooNE Data
	Relative Calibration Among Multiple Planes


	Metrics in Evaluating TPC Signal Processing
	Future Developments
	Summary
	Appendix I: Examples of 2D Event Display
	Appendix II: Examples of 2D Event Display for Electromagnetic Showers
	Appendix III: Examples of 2D Event Display for o
	References


