Measurement of neutral current single π^0 production on argon with the MicroBooNE detector Auxiliary Materials

The MicroBooNE Collaboration

November 10, 2022

Abstract

This document contains auxiliary materials that support the analysis presented in the paper titled "Measurement of neutral current single π^0 production on argon with the Micro-BooNE detector", which is available as arXiv 2205.07943.

Figure 1: A breakdown of the origin production process for all NC π^0 in the default GENIE v3.0 simulation, as a function of true π^0 momentum. Below 400 MeV, where the majority of our π^0 live, the majority are Resonantly produced via the Δ baryon; however, above 400 MeV, higher order resonances and deep inelastic scattering become the dominant processes. "Other" refers mainly to NC quasi-elastic.

Figure 2: The fraction of π^0 generated by neutrino interactions in argon that are contained inside the nucleus and do not exit, as a function the true π^0 momentum. The shape in the containment fraction is due to a Δ resonance in the absorption cross section. The blue spectra represents the true distribution. The red points are calculated as a ratio of all primary NC π^0 that escape the nucleus to all primary NC π^0 produced in the nucleus, i.e. do not include secondary π^0 produced from final state interactions.

Figure 3: Data/MC comparisons of the reconstructed π^0 invariant mass at the pre-selection stage for both signal topologies. The MC error bands include flux and cross-section systematics.